# SPDX-License-Identifier: AGPL-3.0-or-later # lint: pylint """.. sidebar:: info - :origin:`meilisearch.py <searx/engines/meilisearch.py>` - `MeiliSearch <https://www.meilisearch.com>`_ - `MeiliSearch Documentation <https://docs.meilisearch.com/>`_ - `Install MeiliSearch <https://docs.meilisearch.com/learn/getting_started/installation.html>`_ MeiliSearch_ is aimed at individuals and small companies. It is designed for small-scale (less than 10 million documents) data collections. E.g. it is great for storing web pages you have visited and searching in the contents later. The engine supports faceted search, so you can search in a subset of documents of the collection. Furthermore, you can search in MeiliSearch_ instances that require authentication by setting ``auth_token``. Example ======= Here is a simple example to query a Meilisearch instance: .. code:: yaml - name: meilisearch engine: meilisearch shortcut: mes base_url: http://localhost:7700 index: my-index enable_http: true """ # pylint: disable=global-statement from json import loads, dumps base_url = 'http://localhost:7700' index = '' auth_key = '' facet_filters = [] _search_url = '' result_template = 'key-value.html' categories = ['general'] paging = True def init(_): if index == '': raise ValueError('index cannot be empty') global _search_url _search_url = base_url + '/indexes/' + index + '/search' def request(query, params): if auth_key != '': params['headers']['X-Meili-API-Key'] = auth_key params['headers']['Content-Type'] = 'application/json' params['url'] = _search_url params['method'] = 'POST' data = { 'q': query, 'offset': 10 * (params['pageno'] - 1), 'limit': 10, } if len(facet_filters) > 0: data['facetFilters'] = facet_filters params['data'] = dumps(data) return params def response(resp): results = [] resp_json = loads(resp.text) for result in resp_json['hits']: r = {key: str(value) for key, value in result.items()} r['template'] = result_template results.append(r) return results