forked from zaclys/searxng
106 lines
3.4 KiB
Python
106 lines
3.4 KiB
Python
# SPDX-License-Identifier: AGPL-3.0-or-later
|
|
# lint: pylint
|
|
"""Semantic Scholar (Science)
|
|
"""
|
|
|
|
from json import dumps, loads
|
|
from datetime import datetime
|
|
|
|
from flask_babel import gettext
|
|
|
|
about = {
|
|
"website": 'https://www.semanticscholar.org/',
|
|
"wikidata_id": 'Q22908627',
|
|
"official_api_documentation": 'https://api.semanticscholar.org/',
|
|
"use_official_api": True,
|
|
"require_api_key": False,
|
|
"results": 'JSON',
|
|
}
|
|
|
|
categories = ['science', 'scientific publications']
|
|
paging = True
|
|
search_url = 'https://www.semanticscholar.org/api/1/search'
|
|
paper_url = 'https://www.semanticscholar.org/paper'
|
|
|
|
|
|
def request(query, params):
|
|
params['url'] = search_url
|
|
params['method'] = 'POST'
|
|
params['headers']['content-type'] = 'application/json'
|
|
params['data'] = dumps(
|
|
{
|
|
"queryString": query,
|
|
"page": params['pageno'],
|
|
"pageSize": 10,
|
|
"sort": "relevance",
|
|
"useFallbackRankerService": False,
|
|
"useFallbackSearchCluster": False,
|
|
"getQuerySuggestions": False,
|
|
"authors": [],
|
|
"coAuthors": [],
|
|
"venues": [],
|
|
"performTitleMatch": True,
|
|
}
|
|
)
|
|
return params
|
|
|
|
|
|
def response(resp):
|
|
res = loads(resp.text)
|
|
results = []
|
|
for result in res['results']:
|
|
url = result.get('primaryPaperLink', {}).get('url')
|
|
if not url and result.get('links'):
|
|
url = result.get('links')[0]
|
|
if not url:
|
|
alternatePaperLinks = result.get('alternatePaperLinks')
|
|
if alternatePaperLinks:
|
|
url = alternatePaperLinks[0].get('url')
|
|
if not url:
|
|
url = paper_url + '/%s' % result['id']
|
|
|
|
# publishedDate
|
|
if 'pubDate' in result:
|
|
publishedDate = datetime.strptime(result['pubDate'], "%Y-%m-%d")
|
|
else:
|
|
publishedDate = None
|
|
|
|
# authors
|
|
authors = [author[0]['name'] for author in result.get('authors', [])]
|
|
|
|
# pick for the first alternate link, but not from the crawler
|
|
pdf_url = None
|
|
for doc in result.get('alternatePaperLinks', []):
|
|
if doc['linkType'] not in ('crawler', 'doi'):
|
|
pdf_url = doc['url']
|
|
break
|
|
|
|
# comments
|
|
comments = None
|
|
if 'citationStats' in result:
|
|
comments = gettext(
|
|
'{numCitations} citations from the year {firstCitationVelocityYear} to {lastCitationVelocityYear}'
|
|
).format(
|
|
numCitations=result['citationStats']['numCitations'],
|
|
firstCitationVelocityYear=result['citationStats']['firstCitationVelocityYear'],
|
|
lastCitationVelocityYear=result['citationStats']['lastCitationVelocityYear'],
|
|
)
|
|
|
|
results.append(
|
|
{
|
|
'template': 'paper.html',
|
|
'url': url,
|
|
'title': result['title']['text'],
|
|
'content': result['paperAbstract']['text'],
|
|
'journal': result.get('venue', {}).get('text') or result.get('journal', {}).get('name'),
|
|
'doi': result.get('doiInfo', {}).get('doi'),
|
|
'tags': result.get('fieldsOfStudy'),
|
|
'authors': authors,
|
|
'pdf_url': pdf_url,
|
|
'publishedDate': publishedDate,
|
|
'comments': comments,
|
|
}
|
|
)
|
|
|
|
return results
|