searxngRebrandZaclys/searx/engines/__init__.py
2014-01-20 02:31:20 +01:00

284 lines
9.9 KiB
Python

'''
searx is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
searx is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License
along with searx. If not, see < http://www.gnu.org/licenses/ >.
(C) 2013- by Adam Tauber, <asciimoo@gmail.com>
'''
from os.path import realpath, dirname, splitext, join
from imp import load_source
import grequests
from itertools import izip_longest, chain
from operator import itemgetter
from urlparse import urlparse
from searx import settings
from searx.utils import gen_useragent
import sys
from datetime import datetime
engine_dir = dirname(realpath(__file__))
number_of_searches = 0
engines = {}
categories = {'general': []}
def load_module(filename):
modname = splitext(filename)[0]
if modname in sys.modules:
del sys.modules[modname]
filepath = join(engine_dir, filename)
module = load_source(modname, filepath)
module.name = modname
return module
if not 'engines' in settings or not settings['engines']:
print '[E] Error no engines found. Edit your settings.yml'
exit(2)
for engine_data in settings['engines']:
engine_name = engine_data['engine']
engine = load_module(engine_name + '.py')
for param_name in engine_data:
if param_name == 'engine':
continue
if param_name == 'categories':
if engine_data['categories'] == 'none':
engine.categories = []
else:
engine.categories = map(
str.strip, engine_data['categories'].split(','))
continue
setattr(engine, param_name, engine_data[param_name])
for engine_attr in dir(engine):
if engine_attr.startswith('_'):
continue
if getattr(engine, engine_attr) is None:
print '[E] Engine config error: Missing attribute "{0}.{1}"'.format(engine.name, engine_attr) # noqa
sys.exit(1)
engines[engine.name] = engine
engine.stats = {
'result_count': 0,
'search_count': 0,
'page_load_time': 0,
'score_count': 0,
'errors': 0
}
if hasattr(engine, 'categories'):
for category_name in engine.categories:
categories.setdefault(category_name, []).append(engine)
else:
categories['general'].append(engine)
def default_request_params():
return {
'method': 'GET', 'headers': {}, 'data': {}, 'url': '', 'cookies': {}}
def make_callback(engine_name, results, suggestions, callback, params):
# creating a callback wrapper for the search engine results
def process_callback(response, **kwargs):
cb_res = []
response.search_params = params
engines[engine_name].stats['page_load_time'] += \
(datetime.now() - params['started']).total_seconds()
try:
search_results = callback(response)
except Exception, e:
engines[engine_name].stats['errors'] += 1
results[engine_name] = cb_res
print '[E] Error with engine "{0}":\n\t{1}'.format(
engine_name, str(e))
return
for result in search_results:
result['engine'] = engine_name
if 'suggestion' in result:
# TODO type checks
suggestions.add(result['suggestion'])
continue
cb_res.append(result)
results[engine_name] = cb_res
return process_callback
def score_results(results):
flat_res = filter(
None, chain.from_iterable(izip_longest(*results.values())))
flat_len = len(flat_res)
engines_len = len(results)
results = []
# deduplication + scoring
for i, res in enumerate(flat_res):
res['parsed_url'] = urlparse(res['url'])
res['engines'] = [res['engine']]
weight = 1.0
if hasattr(engines[res['engine']], 'weight'):
weight = float(engines[res['engine']].weight)
score = int((flat_len - i) / engines_len) * weight + 1
duplicated = False
for new_res in results:
p1 = res['parsed_url'].path[:-1] if res['parsed_url'].path.endswith('/') else res['parsed_url'].path # noqa
p2 = new_res['parsed_url'].path[:-1] if new_res['parsed_url'].path.endswith('/') else new_res['parsed_url'].path # noqa
if res['parsed_url'].netloc == new_res['parsed_url'].netloc and\
p1 == p2 and\
res['parsed_url'].query == new_res['parsed_url'].query and\
res.get('template') == new_res.get('template'):
duplicated = new_res
break
if duplicated:
if len(res.get('content', '')) > len(duplicated.get('content', '')): # noqa
duplicated['content'] = res['content']
duplicated['score'] += score
duplicated['engines'].append(res['engine'])
if duplicated['parsed_url'].scheme == 'https':
continue
elif res['parsed_url'].scheme == 'https':
duplicated['url'] = res['parsed_url'].geturl()
duplicated['parsed_url'] = res['parsed_url']
else:
res['score'] = score
results.append(res)
return sorted(results, key=itemgetter('score'), reverse=True)
def search(query, request, selected_engines):
global engines, categories, number_of_searches
requests = []
results = {}
suggestions = set()
number_of_searches += 1
#user_agent = request.headers.get('User-Agent', '')
user_agent = gen_useragent()
for selected_engine in selected_engines:
if selected_engine['name'] not in engines:
continue
engine = engines[selected_engine['name']]
request_params = default_request_params()
request_params['headers']['User-Agent'] = user_agent
request_params['category'] = selected_engine['category']
request_params['started'] = datetime.now()
request_params = engine.request(query, request_params)
callback = make_callback(
selected_engine['name'],
results,
suggestions,
engine.response,
request_params
)
request_args = dict(
headers=request_params['headers'],
hooks=dict(response=callback),
cookies=request_params['cookies'],
timeout=settings['server']['request_timeout']
)
if request_params['method'] == 'GET':
req = grequests.get
else:
req = grequests.post
request_args['data'] = request_params['data']
# ignoring empty urls
if not request_params['url']:
continue
requests.append(req(request_params['url'], **request_args))
grequests.map(requests)
for engine_name, engine_results in results.items():
engines[engine_name].stats['search_count'] += 1
engines[engine_name].stats['result_count'] += len(engine_results)
results = score_results(results)
for result in results:
for res_engine in result['engines']:
engines[result['engine']].stats['score_count'] += result['score']
return results, suggestions
def get_engines_stats():
# TODO refactor
pageloads = []
results = []
scores = []
errors = []
scores_per_result = []
max_pageload = max_results = max_score = max_errors = max_score_per_result = 0 # noqa
for engine in engines.values():
if engine.stats['search_count'] == 0:
continue
results_num = \
engine.stats['result_count'] / float(engine.stats['search_count'])
load_times = engine.stats['page_load_time'] / float(engine.stats['search_count']) # noqa
if results_num:
score = engine.stats['score_count'] / float(engine.stats['search_count']) # noqa
score_per_result = score / results_num
else:
score = score_per_result = 0.0
max_results = max(results_num, max_results)
max_pageload = max(load_times, max_pageload)
max_score = max(score, max_score)
max_score_per_result = max(score_per_result, max_score_per_result)
max_errors = max(max_errors, engine.stats['errors'])
pageloads.append({'avg': load_times, 'name': engine.name})
results.append({'avg': results_num, 'name': engine.name})
scores.append({'avg': score, 'name': engine.name})
errors.append({'avg': engine.stats['errors'], 'name': engine.name})
scores_per_result.append({
'avg': score_per_result,
'name': engine.name
})
for engine in pageloads:
engine['percentage'] = int(engine['avg'] / max_pageload * 100)
for engine in results:
engine['percentage'] = int(engine['avg'] / max_results * 100)
for engine in scores:
engine['percentage'] = int(engine['avg'] / max_score * 100)
for engine in scores_per_result:
engine['percentage'] = int(engine['avg'] / max_score_per_result * 100)
for engine in errors:
if max_errors:
engine['percentage'] = int(float(engine['avg']) / max_errors * 100)
else:
engine['percentage'] = 0
return [
('Page loads (sec)', sorted(pageloads, key=itemgetter('avg'))),
(
'Number of results',
sorted(results, key=itemgetter('avg'), reverse=True)
),
('Scores', sorted(scores, key=itemgetter('avg'), reverse=True)),
(
'Scores per result',
sorted(scores_per_result, key=itemgetter('avg'), reverse=True)
),
('Errors', sorted(errors, key=itemgetter('avg'), reverse=True)),
]