Here is the an example code for using EiXGNN from the `"EiX-GNN: Concept-level eigencentrality explainer for graph neural networks"`_ paper ```python from torch_geometric.datasets import TUDataset dataset = TUDataset(root="/tmp/ENZYMES", name="ENZYMES") data = dataset[0] import torch.nn.functional as F from torch_geometric.nn import GCNConv, global_mean_pool class GCN(torch.nn.Module): def __init__(self): super().__init__() self.conv1 = GCNConv(dataset.num_node_features, 20) self.conv2 = GCNConv(20, dataset.num_classes) def forward(self, data): x, edge_index, batch = data.x, data.edge_index, data.batch x = self.conv1(x, edge_index) x = F.relu(x) x = global_mean_pool(x, batch) x = F.softmax(x, dim=1) return x device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = GCN().to(device) model.eval() data = dataset[0].to(device) explainer = EiXGNN() explained = explainer.forward(model, data.x, data.edge_index) ```