50 lines
1.4 KiB
Python
50 lines
1.4 KiB
Python
|
import torch
|
||
|
from torch.autograd import Variable
|
||
|
import torch.nn as nn
|
||
|
import torch.nn.functional as F
|
||
|
import torch.optim as optim
|
||
|
|
||
|
EPOCHS_TO_TRAIN = 50000000000
|
||
|
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
||
|
if not torch.cuda.is_available():
|
||
|
print(f'The current used device for this testing training is {device}. Please make sure that at least one Cuda device is used instead for this testing training.')
|
||
|
assert False
|
||
|
|
||
|
class Net(nn.Module):
|
||
|
def __init__(self):
|
||
|
super(Net, self).__init__()
|
||
|
self.fc1 = nn.Linear(2, 3, True)
|
||
|
self.fc2 = nn.Linear(3, 1, True)
|
||
|
|
||
|
def forward(self, x):
|
||
|
x = F.sigmoid(self.fc1(x))
|
||
|
x = self.fc2(x)
|
||
|
return x
|
||
|
|
||
|
|
||
|
net = Net().to(device)
|
||
|
print(device)
|
||
|
inputs = list(
|
||
|
map(
|
||
|
lambda s: Variable(torch.Tensor([s]).to(device)),
|
||
|
[[0, 0], [0, 1], [1, 0], [1, 1]],
|
||
|
)
|
||
|
)
|
||
|
targets = list(
|
||
|
map(lambda s: Variable(torch.Tensor([s]).to(device)), [[0], [1], [1], [0]])
|
||
|
)
|
||
|
|
||
|
criterion = nn.MSELoss()
|
||
|
optimizer = optim.SGD(net.parameters(), lr=0.01)
|
||
|
|
||
|
print("Training loop:")
|
||
|
for idx in range(0, EPOCHS_TO_TRAIN):
|
||
|
for input, target in zip(inputs, targets):
|
||
|
optimizer.zero_grad() # zero the gradient buffers
|
||
|
output = net(input)
|
||
|
loss = criterion(output, target)
|
||
|
loss.backward()
|
||
|
optimizer.step() # Does the update
|
||
|
if idx % 5000 == 0:
|
||
|
print(loss.item())
|