gpus_monitor/test_torch.py
2020-11-08 15:51:36 +01:00

50 lines
1.4 KiB
Python

import torch
from torch.autograd import Variable
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
EPOCHS_TO_TRAIN = 50000000000
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
if not torch.cuda.is_available():
print(f'The current used device for this testing training is {device}. Please make sure that at least one Cuda device is used instead for this testing training.')
assert False
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.fc1 = nn.Linear(2, 3, True)
self.fc2 = nn.Linear(3, 1, True)
def forward(self, x):
x = F.sigmoid(self.fc1(x))
x = self.fc2(x)
return x
net = Net().to(device)
print(device)
inputs = list(
map(
lambda s: Variable(torch.Tensor([s]).to(device)),
[[0, 0], [0, 1], [1, 0], [1, 1]],
)
)
targets = list(
map(lambda s: Variable(torch.Tensor([s]).to(device)), [[0], [1], [1], [0]])
)
criterion = nn.MSELoss()
optimizer = optim.SGD(net.parameters(), lr=0.01)
print("Training loop:")
for idx in range(0, EPOCHS_TO_TRAIN):
for input, target in zip(inputs, targets):
optimizer.zero_grad() # zero the gradient buffers
output = net(input)
loss = criterion(output, target)
loss.backward()
optimizer.step() # Does the update
if idx % 5000 == 0:
print(loss.item())