Decrease output width for readibility

Update roadmap
This commit is contained in:
gnoblet 2023-01-24 19:35:18 -05:00
parent 8f9c47f917
commit 1c03db7077

View file

@ -43,10 +43,11 @@ Roadmap is as follows:
- [X] Add IMPACT's colors - [X] Add IMPACT's colors
- [X] Add all color palettes from the internal documentation - [X] Add all color palettes from the internal documentation
- [ ] There remains to be added more-than-7-color palettes and black color palettes - [ ] There remains to be added more-than-7-color palettes and black color palettes
- [ ] Add new types of visualization (e.g. dumbbell plot) - [X] Add new types of visualization (e.g. dumbbell plot, lollipop plot, etc.)
- [ ] Use examples - [X] Use examples
- [ ] Add some ease-map functions - [ ] Add some ease-map functions
- [ ] Add some interactive functions (maps and graphs) - [ ] Add some interactive functions (maps and graphs)
- [ ] Consolidate and make errors transparent
## Request ## Request
@ -73,7 +74,7 @@ pal_reach(show_palettes = T)
### Example 1: Bar chart, already REACH themed ### Example 1: Bar chart, already REACH themed
```{r example-bar-chart, eval = TRUE} ```{r example-bar-chart, out.width = "65%", eval = TRUE}
library(visualizeR) library(visualizeR)
library(palmerpenguins) library(palmerpenguins)
library(dplyr) library(dplyr)
@ -100,7 +101,7 @@ bar(df, island, mean_bl, species, group_title = "Species", flip = FALSE, add_tex
At this stage, `point_reach()` only supports categorical grouping colors with the `group` arg. At this stage, `point_reach()` only supports categorical grouping colors with the `group` arg.
```{r example-point-chart, eval = TRUE} ```{r example-point-chart, out.width = "65%", eval = TRUE}
# Simple point chart # Simple point chart
point(penguins, bill_length_mm, flipper_length_mm) point(penguins, bill_length_mm, flipper_length_mm)
@ -109,7 +110,7 @@ point(penguins, bill_length_mm, flipper_length_mm)
point(penguins, bill_length_mm, flipper_length_mm, island, alpha = 0.6, size = 3, theme = theme_reach(reverse = TRUE)) point(penguins, bill_length_mm, flipper_length_mm, island, alpha = 0.6, size = 3, theme = theme_reach(reverse = TRUE))
# Using another color palettes # Using another color palettes
point(penguins, bill_length_mm, flipper_length_mm, island, size = 1.5, x_title = "Bill", y_title = "Flipper", title = "Length (mm)", theme = theme_reach(palette = "artichoke_3", text_font_face = , grid_x = T, title_position_to_plot = FALSE)) point(penguins, bill_length_mm, flipper_length_mm, island, size = 1.5, x_title = "Bill", y_title = "Flipper", title = "Length (mm)", theme = theme_reach(palette = "artichoke_3", text_font_face = , grid_major_x = TRUE, title_position_to_plot = FALSE))
``` ```
@ -117,10 +118,10 @@ point(penguins, bill_length_mm, flipper_length_mm, island, size = 1.5, x_title =
Remember to ensure that your data are in the long format and you only have two groups on the x-axis; for instance, IDP and returnee and no NA values. Remember to ensure that your data are in the long format and you only have two groups on the x-axis; for instance, IDP and returnee and no NA values.
```{r example-dumbbell-plot, eval = TRUE} ```{r example-dumbbell-plot, out.width = "65%", eval = TRUE}
# Prepare long data # Prepare long data
df <- tibble::tibble( df <- tibble::tibble(
admin1 = rep(c("A", "B", "C", "D", "E", "F", "G", "H"), 2), admin1 = rep(letters[1:8], 2),
setting = c(rep(c("Rural", "Urban"), 4), rep(c("Urban", "Rural"), 4)), setting = c(rep(c("Rural", "Urban"), 4), rep(c("Urban", "Rural"), 4)),
stat = rnorm(16, mean = 50, sd = 18) stat = rnorm(16, mean = 50, sd = 18)
) |> ) |>
@ -148,7 +149,7 @@ dumbbell(df,
``` ```
### Example 4: donut chart, REACH themed (to used moderately) ### Example 4: donut chart, REACH themed (to used moderately)
```{r example-donut-plot, warning = FALSE} ```{r example-donut-plot, out.width = "65%", warning = FALSE}
# Some summarized data: % of HHs by displacement status # Some summarized data: % of HHs by displacement status
df <- tibble::tibble( df <- tibble::tibble(
@ -170,7 +171,7 @@ donut(df,
``` ```
### Example 5: alluvial chart, REACH themed ### Example 5: alluvial chart, REACH themed
```{r example-alluvial-plot, warning = FALSE} ```{r example-alluvial-plot, out.width = "65%", warning = FALSE}
# Some summarized data: % of HHs by self-reported status of displacement in 2021 and in 2022 # Some summarized data: % of HHs by self-reported status of displacement in 2021 and in 2022
df <- tibble::tibble( df <- tibble::tibble(
@ -199,11 +200,53 @@ alluvial(df,
``` ```
### Example 6: lollipop chart
```{r example-lollipop-chart, out.width = "65%", warning = FALSE}
library(tidyr)
# Prepare long data
df <- tibble::tibble(
admin1 = replicate(15, sample(letters, 8)) |> t() |> as.data.frame() |> unite("admin1", sep = "") |> dplyr::pull(admin1),
stat = rnorm(15, mean = 50, sd = 15)) |>
dplyr::mutate(stat = round(stat, 0))
# Make lollipop plot, REACH themed, vertical with 45 degrees angle X-labels
lollipop(df,
admin1,
stat,
arrange = FALSE,
add_text = FALSE,
flip = FALSE,
y_title = "% of HHs",
x_title = "Admin 1",
title = "% of HHs that reported having received a humanitarian assistance",
theme = theme_reach(axis_text_x_angle = 45,
grid_major_y = TRUE,
grid_major_y_size = 0.2,
grid_major_x = TRUE,
grid_minor_y = TRUE))
# Horizontal, greater point size, arranged by value, no grid, and text labels added
lollipop(df,
admin1,
stat,
arrange = TRUE,
point_size = 10,
point_color = cols_reach("main_beige"),
segment_size = 2,
add_text = TRUE,
add_text_suffix = "%",
y_title = "% of HHs",
x_title = "Admin 1",
title = "% of HHs that reported having received a humanitarian assistance in the 12 months prior to the assessment",
theme = theme_reach(title_position_to_plot = FALSE))
```
## Maps ## Maps
```{r example-map} ```{r example-map, out.width = "50%"}
# Add indicator layer # Add indicator layer
# - based on "pretty" classes and title "Proportion (%)" # - based on "pretty" classes and title "Proportion (%)"