Update README with grouped lollipop chart examples and roadmap

This commit is contained in:
gnoblet 2025-07-02 12:23:09 +02:00
parent 767ad2f064
commit 7ccaa74d17
2 changed files with 240 additions and 73 deletions

View file

@ -32,12 +32,21 @@ You can install the last version of visualizeR from [GitHub](https://github.com/
```{r, eval = FALSE}
# install.packages("devtools")
devtools::install_github('gnoblet/visualizeR', build_vignettes = TRUE)
devtools::install_github("gnoblet/visualizeR", build_vignettes = TRUE)
```
## Roadmap
Roadmap is as follows: - [ ] Full revamp \## Request
Roadmap is as follows:
- [ ] Full revamp of core functions (colors, pattern, incl. adding test and pre-commit structures)
- [ ] Add other types of plots:
- [ ] Dumbell
- [ ] Waffle
- [ ] Donut
- [ ] Alluvial
## Request
Please, do not hesitate to pull request any new viz or colors or color palettes, or to email request any change ([gnoblet\@zaclys.net](mailto:gnoblet@zaclys.net){.email}).
@ -52,7 +61,7 @@ library(visualizeR)
color(unname = F)[1:10]
# Extract a color palette as hexadecimal codes and reversed
palette(palette = 'cat_5_main', reversed = TRUE, color_ramp_palette = FALSE)
palette(palette = "cat_5_main", reversed = TRUE, color_ramp_palette = FALSE)
# Get all color palettes names
palette(show_palettes = TRUE)
@ -83,29 +92,29 @@ df_island <- penguins |>
ungroup()
# Simple bar chart by group with some alpha transparency
bar(df, 'island', 'mean_bl', 'species', x_title = 'Mean of bill length', title = 'Mean of bill length by island and species')
bar(df, "island", "mean_bl", "species", x_title = "Mean of bill length", title = "Mean of bill length by island and species")
# Flipped / Horizontal
hbar(df, 'island', 'mean_bl', 'species', x_title = 'Mean of bill length', title = 'Mean of bill length by island and species')
hbar(df, "island", "mean_bl", "species", x_title = "Mean of bill length", title = "Mean of bill length by island and species")
# Facetted
bar(df, 'island', 'mean_bl', facet = 'species', x_title = 'Mean of bill length', title = 'Mean of bill length by island and species', add_color_guide = FALSE)
bar(df, "island", "mean_bl", facet = "species", x_title = "Mean of bill length", title = "Mean of bill length by island and species", add_color_guide = FALSE)
# Flipped, with text, smaller width, and caption
hbar(df = df_island, x = 'island', y = 'mean_bl', title = 'Mean of bill length by island', add_text = T, width = 0.6, add_text_suffix = 'mm', add_text_expand_limit = 1.3, add_color_guide = FALSE, caption = "Data: palmerpenguins package.")
hbar(df = df_island, x = "island", y = "mean_bl", title = "Mean of bill length by island", add_text = T, width = 0.6, add_text_suffix = "mm", add_text_expand_limit = 1.3, add_color_guide = FALSE, caption = "Data: palmerpenguins package.")
```
### Example 2: Scatterplot
```{r example-point-chart, out.width = '65%', eval = TRUE}
# Simple scatterplot
point(penguins, 'bill_length_mm', 'flipper_length_mm')
point(penguins, "bill_length_mm", "flipper_length_mm")
# Scatterplot with grouping colors, greater dot size, some transparency
point(penguins, 'bill_length_mm', 'flipper_length_mm', 'island', group_title = 'Island', alpha = 0.6, size = 3, title = 'Bill vs. flipper length', , add_color_guide = FALSE)
point(penguins, "bill_length_mm", "flipper_length_mm", "island", group_title = "Island", alpha = 0.6, size = 3, title = "Bill vs. flipper length", , add_color_guide = FALSE)
# Facetted scatterplot by island
point(penguins, 'bill_length_mm', 'flipper_length_mm', 'species', 'island', 'fixed', group_title = 'Species', title = 'Bill vs. flipper length by species and island', add_color_guide = FALSE)
point(penguins, "bill_length_mm", "flipper_length_mm", "species", "island", "fixed", group_title = "Species", title = "Bill vs. flipper length by species and island", add_color_guide = FALSE)
```
### Example 3: Dumbbell plot
@ -116,7 +125,7 @@ Remember to ensure that your data are in the long format and you only have two g
# Prepare long data
df <- tibble::tibble(
admin1 = rep(letters[1:8], 2),
setting = c(rep(c('Rural', 'Urban'), 4), rep(c('Urban', 'Rural'), 4)),
setting = c(rep(c("Rural", "Urban"), 4), rep(c("Urban", "Rural"), 4)),
stat = rnorm(16, mean = 50, sd = 18)
) |>
dplyr::mutate(stat = round(stat, 0))
@ -140,7 +149,7 @@ df <- tibble::tibble(
```{r example-donut-plot, out.width = '65%', warning = FALSE}
# Some summarized data: % of HHs by displacement status
df <- tibble::tibble(
status = c('Displaced', 'Non displaced', 'Returnee', 'Don\'t know/Prefer not to say'),
status = c("Displaced", "Non displaced", "Returnee", "Don't know/Prefer not to say"),
percentage = c(18, 65, 12, 3)
)
@ -170,12 +179,12 @@ df <- tibble::tibble(
# Some summarized data: % of HHs by self-reported status of displacement in 2021 and in 2022
df <- tibble::tibble(
status_from = c(
rep('Displaced', 4),
rep('Non displaced', 4),
rep('Returnee', 4),
rep('Dnk/Pnts', 4)
rep("Displaced", 4),
rep("Non displaced", 4),
rep("Returnee", 4),
rep("Dnk/Pnts", 4)
),
status_to = c('Displaced', 'Non displaced', 'Returnee', 'Dnk/Pnts', 'Displaced', 'Non displaced', 'Returnee', 'Dnk/Pnts', 'Displaced', 'Non displaced', 'Returnee', 'Dnk/Pnts', 'Displaced', 'Non displaced', 'Returnee', 'Dnk/Pnts'),
status_to = c("Displaced", "Non displaced", "Returnee", "Dnk/Pnts", "Displaced", "Non displaced", "Returnee", "Dnk/Pnts", "Displaced", "Non displaced", "Returnee", "Dnk/Pnts", "Displaced", "Non displaced", "Returnee", "Dnk/Pnts"),
percentage = c(20, 8, 18, 1, 12, 21, 0, 2, 0, 3, 12, 1, 0, 0, 1, 1)
)
@ -195,7 +204,7 @@ df <- tibble::tibble(
### Example 7: Lollipop chart
```{r example-lollipop-chart, out.width = "65%", warning = FALSE}
```{r example-lollipop-chart, out.width = "65%", warning = FALSE, eval = TRUE}
library(tidyr)
# Prepare long data
df <- tibble::tibble(
@ -204,15 +213,79 @@ df <- tibble::tibble(
) |>
dplyr::mutate(stat = round(stat, 0))
# Make lollipop plot, vertical with 45 degrees angle X-labels
# lollipop(df,
# admin1,
# stat,
# arrange = FALSE,
# add_text = FALSE,
# flip = FALSE,
# y_title = "% of HHs",
# x_title = "Admin 1",
# title = "% of HHs that reported having received a humanitarian assistance"
# )
# Simple vertical lollipop chart
lollipop(
df = df,
x = "admin1",
y = "stat",
flip = FALSE,
dot_size = 3,
y_title = "% of HHs",
x_title = "Admin 1",
title = "% of HHs that received humanitarian assistance"
)
# Horizontal lollipop chart with custom colors
hlollipop(
df = df,
x = "admin1",
y = "stat",
dot_size = 4,
line_size = 1,
add_color = color("cat_5_main_2"),
line_color = color("cat_5_main_4"),
y_title = "% of HHs",
x_title = "Admin 1",
title = "% of HHs that received humanitarian assistance"
)
# Create data for grouped lollipop - using set.seed for reproducibility
set.seed(123)
df_grouped <- tibble::tibble(
admin1 = rep(c("A", "B", "C", "D", "E", "F"), 2),
group = rep(c("Group A", "Group B"), each = 6),
stat = c(rnorm(6, mean = 40, sd = 10), rnorm(6, mean = 60, sd = 10))
) |>
dplyr::mutate(stat = round(stat, 0))
# Grouped lollipop chart with proper side-by-side positioning
lollipop(
df = df_grouped,
x = "admin1",
y = "stat",
group = "group",
order = "grouped_y",
dodge_width = 0.8, # Control spacing between grouped lollipops
dot_size = 3.5,
line_size = 0.8,
y_title = "Value",
x_title = "Category",
title = "True side-by-side grouped lollipop chart"
)
# Horizontal grouped lollipop chart
hlollipop(
df = df_grouped,
x = "admin1",
y = "stat",
group = "group",
dodge_width = 0.7, # Narrower spacing for horizontal orientation
dot_size = 3.5,
line_size = 0.8,
y_title = "Category",
x_title = "Value",
title = "Horizontal side-by-side grouped lollipop chart"
)
```
## Lollipop Chart Features
Lollipop charts offer several advantages:
- Clean visualization of point data with connecting lines to a baseline
- True side-by-side grouped display for easy comparison between categories
- Each lollipop maintains its position from dot to baseline
- Customizable appearance with parameters for dot size, line width, and colors
- The `dodge_width` parameter controls spacing between grouped lollipops
The side-by-side positioning for grouped lollipops makes them visually distinct from dumbbell plots, which typically connect related points on the same line.

182
README.md
View file

@ -15,12 +15,22 @@ You can install the last version of visualizeR from
``` r
# install.packages("devtools")
devtools::install_github("gnoblet/visualizeR", build_vignettes = TRUE)
devtools::install_github('gnoblet/visualizeR', build_vignettes = TRUE)
```
## Roadmap
Roadmap is as follows: - \[ \] Full revamp \## Request
Roadmap is as follows:
- [ ] Full revamp of core functions (colors, pattern, incl. adding test
and pre-commit structures)
- [ ] Add other types of plots:
- [ ] Dumbell
- [ ] Waffle
- [ ] Donut
- [ ] Alluvial
## Request
Please, do not hesitate to pull request any new viz or colors or color
palettes, or to email request any change (<gnoblet@zaclys.net>).
@ -35,13 +45,13 @@ library(visualizeR)
# Get all saved colors, named
color(unname = F)[1:10]
#> white lighter_grey light_grey dark_grey black
#> "#FFFFFF" "#F5F5F5" "#E3E3E3" "#464647" "#000000"
#> cat_2_yellow_1 cat_2_yellow_2 cat_2_light_1 cat_2_light_2 cat_2_green_1
#> "#ffc20a" "#0c7bdc" "#fefe62" "#d35fb7" "#1aff1a"
#> white lighter_grey light_grey dark_grey light_blue_grey
#> "#FFFFFF" "#F5F5F5" "#E3E3E3" "#464647" "#B3C6D1"
#> grey black cat_2_yellow_1 cat_2_yellow_2 cat_2_light_1
#> "#71716F" "#000000" "#ffc20a" "#0c7bdc" "#fefe62"
# Extract a color palette as hexadecimal codes and reversed
palette(palette = "cat_5_main", reversed = TRUE, color_ramp_palette = FALSE)
palette(palette = 'cat_5_main', reversed = TRUE, color_ramp_palette = FALSE)
#> [1] "#083d77" "#4ecdc4" "#f4c095" "#b47eb3" "#ffd5ff"
# Get all color palettes names
@ -81,7 +91,7 @@ df_island <- penguins |>
ungroup()
# Simple bar chart by group with some alpha transparency
bar(df, "island", "mean_bl", "species", x_title = "Mean of bill length", title = "Mean of bill length by island and species")
bar(df, 'island', 'mean_bl', 'species', x_title = 'Mean of bill length', title = 'Mean of bill length by island and species')
```
<img src="man/figures/README-example-bar-chart-1.png" width="65%" />
@ -89,7 +99,7 @@ bar(df, "island", "mean_bl", "species", x_title = "Mean of bill length", title =
``` r
# Flipped / Horizontal
hbar(df, "island", "mean_bl", "species", x_title = "Mean of bill length", title = "Mean of bill length by island and species")
hbar(df, 'island', 'mean_bl', 'species', x_title = 'Mean of bill length', title = 'Mean of bill length by island and species')
```
<img src="man/figures/README-example-bar-chart-2.png" width="65%" />
@ -97,15 +107,15 @@ hbar(df, "island", "mean_bl", "species", x_title = "Mean of bill length", title
``` r
# Facetted
bar(df, "island", "mean_bl", "species", facet = "species", x_title = "Mean of bill length", title = "Mean of bill length by island and species", add_color_guide = FALSE)
bar(df, 'island', 'mean_bl', facet = 'species', x_title = 'Mean of bill length', title = 'Mean of bill length by island and species', add_color_guide = FALSE)
```
<img src="man/figures/README-example-bar-chart-3.png" width="65%" />
``` r
# Flipped, with text, smaller width
hbar(df = df_island, x = "island", y = "mean_bl", group = "island", title = "Mean of bill length by island", add_text = T, width = 0.6, add_text_suffix = "mm", add_text_expand_limit = 1.3, add_color_guide = FALSE)
# Flipped, with text, smaller width, and caption
hbar(df = df_island, x = 'island', y = 'mean_bl', title = 'Mean of bill length by island', add_text = T, width = 0.6, add_text_suffix = 'mm', add_text_expand_limit = 1.3, add_color_guide = FALSE, caption = "Data: palmerpenguins package.")
```
<img src="man/figures/README-example-bar-chart-4.png" width="65%" />
@ -114,7 +124,7 @@ hbar(df = df_island, x = "island", y = "mean_bl", group = "island", title = "Mea
``` r
# Simple scatterplot
point(penguins, "bill_length_mm", "flipper_length_mm")
point(penguins, 'bill_length_mm', 'flipper_length_mm')
```
<img src="man/figures/README-example-point-chart-1.png" width="65%" />
@ -122,7 +132,7 @@ point(penguins, "bill_length_mm", "flipper_length_mm")
``` r
# Scatterplot with grouping colors, greater dot size, some transparency
point(penguins, "bill_length_mm", "flipper_length_mm", "island", group_title = "Island", alpha = 0.6, size = 3, title = "Bill vs. flipper length", , add_color_guide = FALSE)
point(penguins, 'bill_length_mm', 'flipper_length_mm', 'island', group_title = 'Island', alpha = 0.6, size = 3, title = 'Bill vs. flipper length', , add_color_guide = FALSE)
```
<img src="man/figures/README-example-point-chart-2.png" width="65%" />
@ -130,7 +140,7 @@ point(penguins, "bill_length_mm", "flipper_length_mm", "island", group_title = "
``` r
# Facetted scatterplot by island
point(penguins, "bill_length_mm", "flipper_length_mm", "species", "island", "fixed", group_title = "Species", title = "Bill vs. flipper length by species and island", add_color_guide = FALSE)
point(penguins, 'bill_length_mm', 'flipper_length_mm', 'species', 'island', 'fixed', group_title = 'Species', title = 'Bill vs. flipper length by species and island', add_color_guide = FALSE)
```
<img src="man/figures/README-example-point-chart-3.png" width="65%" />
@ -145,7 +155,7 @@ values.
# Prepare long data
df <- tibble::tibble(
admin1 = rep(letters[1:8], 2),
setting = c(rep(c("Rural", "Urban"), 4), rep(c("Urban", "Rural"), 4)),
setting = c(rep(c('Rural', 'Urban'), 4), rep(c('Urban', 'Rural'), 4)),
stat = rnorm(16, mean = 50, sd = 18)
) |>
dplyr::mutate(stat = round(stat, 0))
@ -155,12 +165,12 @@ df <- tibble::tibble(
# dumbbell(
# df,
# "stat",
# "setting",
# "admin1",
# title = "% of HHs that reported open defecation as sanitation facility",
# group_y_title = "Admin 1",
# group_x_title = "Setting"
# 'stat',
# 'setting',
# 'admin1',
# title = '% of HHs that reported open defecation as sanitation facility',
# group_y_title = 'Admin 1',
# group_x_title = 'Setting'
# )
```
@ -169,7 +179,7 @@ df <- tibble::tibble(
``` r
# Some summarized data: % of HHs by displacement status
df <- tibble::tibble(
status = c("Displaced", "Non displaced", "Returnee", "Don't know/Prefer not to say"),
status = c('Displaced', 'Non displaced', 'Returnee', 'Don\'t know/Prefer not to say'),
percentage = c(18, 65, 12, 3)
)
@ -178,11 +188,11 @@ df <- tibble::tibble(
# status,
# percentage,
# hole_size = 3,
# add_text_suffix = "%",
# add_text_color = color("dark_grey"),
# add_text_suffix = '%',
# add_text_color = color('dark_grey'),
# add_text_treshold_display = 5,
# x_title = "Displacement status",
# title = "% of HHs by displacement status"
# x_title = 'Displacement status',
# title = '% of HHs by displacement status'
# )
```
@ -190,7 +200,7 @@ df <- tibble::tibble(
``` r
#
# waffle(df, status, percentage, x_title = "A caption", title = "A title", subtitle = "A subtitle")
# waffle(df, status, percentage, x_title = 'A caption', title = 'A title', subtitle = 'A subtitle')
```
### Example 6: Alluvial chart
@ -199,12 +209,12 @@ df <- tibble::tibble(
# Some summarized data: % of HHs by self-reported status of displacement in 2021 and in 2022
df <- tibble::tibble(
status_from = c(
rep("Displaced", 4),
rep("Non displaced", 4),
rep("Returnee", 4),
rep("Dnk/Pnts", 4)
rep('Displaced', 4),
rep('Non displaced', 4),
rep('Returnee', 4),
rep('Dnk/Pnts', 4)
),
status_to = c("Displaced", "Non displaced", "Returnee", "Dnk/Pnts", "Displaced", "Non displaced", "Returnee", "Dnk/Pnts", "Displaced", "Non displaced", "Returnee", "Dnk/Pnts", "Displaced", "Non displaced", "Returnee", "Dnk/Pnts"),
status_to = c('Displaced', 'Non displaced', 'Returnee', 'Dnk/Pnts', 'Displaced', 'Non displaced', 'Returnee', 'Dnk/Pnts', 'Displaced', 'Non displaced', 'Returnee', 'Dnk/Pnts', 'Displaced', 'Non displaced', 'Returnee', 'Dnk/Pnts'),
percentage = c(20, 8, 18, 1, 12, 21, 0, 2, 0, 3, 12, 1, 0, 0, 1, 1)
)
@ -233,15 +243,99 @@ df <- tibble::tibble(
) |>
dplyr::mutate(stat = round(stat, 0))
# Make lollipop plot, vertical with 45 degrees angle X-labels
# lollipop(df,
# admin1,
# stat,
# arrange = FALSE,
# add_text = FALSE,
# flip = FALSE,
# y_title = "% of HHs",
# x_title = "Admin 1",
# title = "% of HHs that reported having received a humanitarian assistance"
# )
# Simple vertical lollipop chart
lollipop(
df = df,
x = "admin1",
y = "stat",
flip = FALSE,
dot_size = 3,
y_title = "% of HHs",
x_title = "Admin 1",
title = "% of HHs that received humanitarian assistance"
)
```
<img src="man/figures/README-example-lollipop-chart-1.png" width="65%" />
``` r
# Horizontal lollipop chart with custom colors
hlollipop(
df = df,
x = "admin1",
y = "stat",
dot_size = 4,
line_size = 1,
add_color = color("cat_5_main_2"),
line_color = color("cat_5_main_4"),
y_title = "% of HHs",
x_title = "Admin 1",
title = "% of HHs that received humanitarian assistance"
)
```
<img src="man/figures/README-example-lollipop-chart-2.png" width="65%" />
``` r
# Create data for grouped lollipop - using set.seed for reproducibility
set.seed(123)
df_grouped <- tibble::tibble(
admin1 = rep(c("A", "B", "C", "D", "E", "F"), 2),
group = rep(c("Group A", "Group B"), each = 6),
stat = c(rnorm(6, mean = 40, sd = 10), rnorm(6, mean = 60, sd = 10))
) |>
dplyr::mutate(stat = round(stat, 0))
# Grouped lollipop chart with proper side-by-side positioning
lollipop(
df = df_grouped,
x = "admin1",
y = "stat",
group = "group",
dodge_width = 0.8, # Control spacing between grouped lollipops
dot_size = 3.5,
line_size = 0.8,
y_title = "Value",
x_title = "Category",
title = "True side-by-side grouped lollipop chart"
)
```
<img src="man/figures/README-example-lollipop-chart-3.png" width="65%" />
``` r
# Horizontal grouped lollipop chart
hlollipop(
df = df_grouped,
x = "admin1",
y = "stat",
group = "group",
dodge_width = 0.7, # Narrower spacing for horizontal orientation
dot_size = 3.5,
line_size = 0.8,
y_title = "Category",
x_title = "Value",
title = "Horizontal side-by-side grouped lollipop chart"
)
```
<img src="man/figures/README-example-lollipop-chart-4.png" width="65%" />
## Lollipop Chart Features
Lollipop charts offer several advantages:
- Clean visualization of point data with connecting lines to a baseline
- True side-by-side grouped display for easy comparison between
categories
- Each lollipop maintains its position from dot to baseline
- Customizable appearance with parameters for dot size, line width, and
colors
- The `dodge_width` parameter controls spacing between grouped lollipops
The side-by-side positioning for grouped lollipops makes them visually
distinct from dumbbell plots, which typically connect related points on
the same line.