# visualizeR > What a color! What a viz! `visualizeR` proposes some utils to sane colors, ready-to-go color palettes, and a few visualization functions. ## Installation You can install the last version of visualizeR from [GitHub](https://github.com/) with: ``` r # install.packages("devtools") devtools::install_github("gnoblet/visualizeR", build_vignettes = TRUE) ``` ## Roadmap Roadmap is as follows: - \[ \] Full revamp \## Request Please, do not hesitate to pull request any new viz or colors or color palettes, or to email request any change (). ## Colors Functions to access colors and palettes are `color()` or `palette()`. Feel free to pull request new colors. ``` r library(visualizeR) # Get all saved colors, named color(unname = F)[1:10] #> white lighter_grey light_grey dark_grey black #> "#FFFFFF" "#F5F5F5" "#E3E3E3" "#464647" "#000000" #> cat_2_yellow_1 cat_2_yellow_2 cat_2_light_1 cat_2_light_2 cat_2_green_1 #> "#ffc20a" "#0c7bdc" "#fefe62" "#d35fb7" "#1aff1a" # Extract a color palette as hexadecimal codes and reversed palette(palette = "cat_5_main", reversed = TRUE, color_ramp_palette = FALSE) #> [1] "#083d77" "#4ecdc4" "#f4c095" "#b47eb3" "#ffd5ff" # Get all color palettes names palette(show_palettes = TRUE) #> [1] "cat_2_yellow" "cat_2_light" #> [3] "cat_2_green" "cat_2_blue" #> [5] "cat_5_main" "cat_5_ibm" #> [7] "cat_3_aquamarine" "cat_3_tol_high_contrast" #> [9] "cat_8_tol_adapted" "cat_3_custom_1" #> [11] "cat_4_custom_1" "cat_5_custom_1" #> [13] "cat_6_custom_1" "div_5_orange_blue" #> [15] "div_5_green_purple" ``` ## Charts ### Example 1: Bar chart ``` r library(palmerpenguins) library(dplyr) df <- penguins |> group_by(island, species) |> summarize( mean_bl = mean(bill_length_mm, na.rm = T), mean_fl = mean(flipper_length_mm, na.rm = T) ) |> ungroup() df_island <- penguins |> group_by(island) |> summarize( mean_bl = mean(bill_length_mm, na.rm = T), mean_fl = mean(flipper_length_mm, na.rm = T) ) |> ungroup() # Simple bar chart by group with some alpha transparency bar(df, "island", "mean_bl", "species", x_title = "Mean of bill length", title = "Mean of bill length by island and species") ``` ``` r # Flipped / Horizontal hbar(df, "island", "mean_bl", "species", x_title = "Mean of bill length", title = "Mean of bill length by island and species") ``` ``` r # Facetted bar(df, "island", "mean_bl", "species", facet = "species", x_title = "Mean of bill length", title = "Mean of bill length by island and species", add_color_guide = FALSE) ``` ``` r # Flipped, with text, smaller width hbar(df = df_island, x = "island", y = "mean_bl", group = "island", title = "Mean of bill length by island", add_text = T, width = 0.6, add_text_suffix = "mm", add_text_expand_limit = 1.3, add_color_guide = FALSE) ``` ### Example 2: Scatterplot ``` r # Simple scatterplot point(penguins, "bill_length_mm", "flipper_length_mm") ``` ``` r # Scatterplot with grouping colors, greater dot size, some transparency point(penguins, "bill_length_mm", "flipper_length_mm", "island", group_title = "Island", alpha = 0.6, size = 3, title = "Bill vs. flipper length", , add_color_guide = FALSE) ``` ``` r # Facetted scatterplot by island point(penguins, "bill_length_mm", "flipper_length_mm", "species", "island", "fixed", group_title = "Species", title = "Bill vs. flipper length by species and island", add_color_guide = FALSE) ``` ### Example 3: Dumbbell plot Remember to ensure that your data are in the long format and you only have two groups on the x-axis; for instance, IDP and returnee and no NA values. ``` r # Prepare long data df <- tibble::tibble( admin1 = rep(letters[1:8], 2), setting = c(rep(c("Rural", "Urban"), 4), rep(c("Urban", "Rural"), 4)), stat = rnorm(16, mean = 50, sd = 18) ) |> dplyr::mutate(stat = round(stat, 0)) # dumbbell( # df, # "stat", # "setting", # "admin1", # title = "% of HHs that reported open defecation as sanitation facility", # group_y_title = "Admin 1", # group_x_title = "Setting" # ) ``` ### Example 4: donut chart ``` r # Some summarized data: % of HHs by displacement status df <- tibble::tibble( status = c("Displaced", "Non displaced", "Returnee", "Don't know/Prefer not to say"), percentage = c(18, 65, 12, 3) ) # Donut # donut(df, # status, # percentage, # hole_size = 3, # add_text_suffix = "%", # add_text_color = color("dark_grey"), # add_text_treshold_display = 5, # x_title = "Displacement status", # title = "% of HHs by displacement status" # ) ``` ### Example 5: Waffle chart ``` r # # waffle(df, status, percentage, x_title = "A caption", title = "A title", subtitle = "A subtitle") ``` ### Example 6: Alluvial chart ``` r # Some summarized data: % of HHs by self-reported status of displacement in 2021 and in 2022 df <- tibble::tibble( status_from = c( rep("Displaced", 4), rep("Non displaced", 4), rep("Returnee", 4), rep("Dnk/Pnts", 4) ), status_to = c("Displaced", "Non displaced", "Returnee", "Dnk/Pnts", "Displaced", "Non displaced", "Returnee", "Dnk/Pnts", "Displaced", "Non displaced", "Returnee", "Dnk/Pnts", "Displaced", "Non displaced", "Returnee", "Dnk/Pnts"), percentage = c(20, 8, 18, 1, 12, 21, 0, 2, 0, 3, 12, 1, 0, 0, 1, 1) ) # Alluvial, here the group is the status for 2021 # alluvial(df, # status_from, # status_to, # percentage, # status_from, # from_levels = c("Displaced", "Non displaced", "Returnee", "Dnk/Pnts"), # alpha = 0.8, # group_title = "Status for 2021", # title = "% of HHs by self-reported status from 2021 to 2022" # ) ``` ### Example 7: Lollipop chart ``` r library(tidyr) # Prepare long data df <- tibble::tibble( admin1 = replicate(15, sample(letters, 8)) |> t() |> as.data.frame() |> unite("admin1", sep = "") |> dplyr::pull(admin1), stat = rnorm(15, mean = 50, sd = 15) ) |> dplyr::mutate(stat = round(stat, 0)) # Make lollipop plot, vertical with 45 degrees angle X-labels # lollipop(df, # admin1, # stat, # arrange = FALSE, # add_text = FALSE, # flip = FALSE, # y_title = "% of HHs", # x_title = "Admin 1", # title = "% of HHs that reported having received a humanitarian assistance" # ) ```