# visualizeR [![R-CMD-check](https://github.com/gnoblet/visualizeR/actions/workflows/R-CMD-check.yml/badge.svg)](https://github.com/gnoblet/visualizeR/actions/workflows/R-CMD-check.yml) [![Codecov test coverage](https://codecov.io/gh/gnoblet/visualizeR/branch/main/graph/badge.svg)](https://app.codecov.io/gh/gnoblet/visualizeR?branch=main) > What a color! What a viz! `visualizeR` proposes some utils to sane colors, ready-to-go color palettes, and a few visualization functions. The package is thoroughly tested with comprehensive code coverage. ## Installation You can install the last version of visualizeR from [GitHub](https://github.com/) with: ``` r # install.packages("devtools") devtools::install_github("gnoblet/visualizeR", build_vignettes = TRUE) ``` ## Roadmap Roadmap is as follows: - [ ] Full revamp of core functions (colors, pattern, incl. adding test and pre-commit structures) - [x] Add test coverage reporting via codecov - [ ] Maintain \>80% test coverage across all functions - [ ] Add other types of plots: - [ ] Dumbell - [ ] Waffle - [ ] Donut - [ ] Alluvial - [ ] Option for tag with css code + for titles/subtitles/captions ## Request Please, do not hesitate to pull request any new viz or colors or color palettes, or to email request any change (). ## Code Coverage `visualizeR` uses [codecov](https://codecov.io/) for test coverage reporting. You can see the current coverage status by clicking on the codecov badge at the top of this README. We aim to maintain high test coverage to ensure code reliability and stability. ## Colors Functions to access colors and palettes are `color()` or `palette()`. Feel free to pull request new colors. ``` r library(visualizeR) # Get all saved colors, named color(unname = F)[1:10] #> white lighter_grey light_grey dark_grey light_blue_grey #> "#FFFFFF" "#F5F5F5" "#E3E3E3" "#464647" "#B3C6D1" #> grey black cat_2_yellow_1 cat_2_yellow_2 cat_2_light_1 #> "#71716F" "#000000" "#ffc20a" "#0c7bdc" "#fefe62" # Extract a color palette as hexadecimal codes and reversed palette(palette = "cat_5_main", reversed = TRUE, color_ramp_palette = FALSE) #> [1] "#083d77" "#4ecdc4" "#f4c095" "#b47eb3" "#ffd5ff" # Get all color palettes names palette(show_palettes = TRUE) #> [1] "cat_2_yellow" "cat_2_light" #> [3] "cat_2_green" "cat_2_blue" #> [5] "cat_5_main" "cat_5_ibm" #> [7] "cat_3_aquamarine" "cat_3_tol_high_contrast" #> [9] "cat_8_tol_adapted" "cat_3_custom_1" #> [11] "cat_4_custom_1" "cat_5_custom_1" #> [13] "cat_6_custom_1" "div_5_orange_blue" #> [15] "div_5_green_purple" ``` ## Charts ### Example 1: Bar chart ``` r library(palmerpenguins) library(dplyr) df <- penguins |> group_by(island, species) |> summarize( mean_bl = mean(bill_length_mm, na.rm = T), mean_fl = mean(flipper_length_mm, na.rm = T) ) |> ungroup() df_island <- penguins |> group_by(island) |> summarize( mean_bl = mean(bill_length_mm, na.rm = T), mean_fl = mean(flipper_length_mm, na.rm = T) ) |> ungroup() # Simple bar chart by group with some alpha transparency bar(df, "island", "mean_bl", "species", x_title = "Mean of bill length", title = "Mean of bill length by island and species") ``` ``` r # Flipped / Horizontal hbar(df, "island", "mean_bl", "species", x_title = "Mean of bill length", title = "Mean of bill length by island and species") ``` ``` r # Facetted bar(df, "island", "mean_bl", facet = "species", x_title = "Mean of bill length", title = "Mean of bill length by island and species", add_color_guide = FALSE) ``` ``` r # Flipped, with text, smaller width, and caption hbar(df = df_island, x = "island", y = "mean_bl", title = "Mean of bill length by island", add_text = T, width = 0.6, add_text_suffix = "mm", add_text_expand_limit = 1.3, add_color_guide = FALSE, caption = "Data: palmerpenguins package.") ``` ### Example 2: Scatterplot ``` r # Simple scatterplot point(penguins, "bill_length_mm", "flipper_length_mm") ``` ``` r # Scatterplot with grouping colors, greater dot size, some transparency point(penguins, "bill_length_mm", "flipper_length_mm", "island", group_title = "Island", alpha = 0.6, size = 3, title = "Bill vs. flipper length", , add_color_guide = FALSE) ``` ``` r # Facetted scatterplot by island point(penguins, "bill_length_mm", "flipper_length_mm", "species", "island", "fixed", group_title = "Species", title = "Bill vs. flipper length by species and island", add_color_guide = FALSE) ``` ### Example 3: Dumbbell plot Remember to ensure that your data are in the long format and you only have two groups on the x-axis; for instance, IDP and returnee and no NA values. ``` r # Prepare long data df <- tibble::tibble( admin1 = rep(letters[1:8], 2), setting = c(rep(c("Rural", "Urban"), 4), rep(c("Urban", "Rural"), 4)), stat = rnorm(16, mean = 50, sd = 18) ) |> dplyr::mutate(stat = round(stat, 0)) # dumbbell( # df, # 'stat', # 'setting', # 'admin1', # title = '% of HHs that reported open defecation as sanitation facility', # group_y_title = 'Admin 1', # group_x_title = 'Setting' # ) ``` ### Example 4: donut chart ``` r # Some summarized data: % of HHs by displacement status df <- tibble::tibble( status = c("Displaced", "Non displaced", "Returnee", "Don't know/Prefer not to say"), percentage = c(18, 65, 12, 3) ) # Donut # donut(df, # status, # percentage, # hole_size = 3, # add_text_suffix = '%', # add_text_color = color('dark_grey'), # add_text_treshold_display = 5, # x_title = 'Displacement status', # title = '% of HHs by displacement status' # ) ``` ### Example 5: Waffle chart ``` r # # waffle(df, status, percentage, x_title = 'A caption', title = 'A title', subtitle = 'A subtitle') ``` ### Example 6: Alluvial chart ``` r # Some summarized data: % of HHs by self-reported status of displacement in 2021 and in 2022 df <- tibble::tibble( status_from = c( rep("Displaced", 4), rep("Non displaced", 4), rep("Returnee", 4), rep("Dnk/Pnts", 4) ), status_to = c("Displaced", "Non displaced", "Returnee", "Dnk/Pnts", "Displaced", "Non displaced", "Returnee", "Dnk/Pnts", "Displaced", "Non displaced", "Returnee", "Dnk/Pnts", "Displaced", "Non displaced", "Returnee", "Dnk/Pnts"), percentage = c(20, 8, 18, 1, 12, 21, 0, 2, 0, 3, 12, 1, 0, 0, 1, 1) ) # Alluvial, here the group is the status for 2021 # alluvial(df, # status_from, # status_to, # percentage, # status_from, # from_levels = c("Displaced", "Non displaced", "Returnee", "Dnk/Pnts"), # alpha = 0.8, # group_title = "Status for 2021", # title = "% of HHs by self-reported status from 2021 to 2022" # ) ``` ### Example 7: Lollipop chart ``` r library(tidyr) # Prepare long data df <- tibble::tibble( admin1 = replicate(15, sample(letters, 8)) |> t() |> as.data.frame() |> unite("admin1", sep = "") |> dplyr::pull(admin1), stat = rnorm(15, mean = 50, sd = 15) ) |> dplyr::mutate(stat = round(stat, 0)) # Simple vertical lollipop chart lollipop( df = df, x = "admin1", y = "stat", flip = FALSE, dot_size = 3, y_title = "% of HHs", x_title = "Admin 1", title = "% of HHs that received humanitarian assistance" ) ``` ``` r # Horizontal lollipop chart with custom colors hlollipop( df = df, x = "admin1", y = "stat", dot_size = 4, line_size = 1, add_color = color("cat_5_main_2"), line_color = color("cat_5_main_4"), y_title = "% of HHs", x_title = "Admin 1", title = "% of HHs that received humanitarian assistance" ) ``` ``` r # Create data for grouped lollipop - using set.seed for reproducibility set.seed(123) df_grouped <- tibble::tibble( admin1 = rep(c("A", "B", "C", "D", "E", "F"), 2), group = rep(c("Group A", "Group B"), each = 6), stat = c(rnorm(6, mean = 40, sd = 10), rnorm(6, mean = 60, sd = 10)) ) |> dplyr::mutate(stat = round(stat, 0)) # Grouped lollipop chart with proper side-by-side positioning lollipop( df = df_grouped, x = "admin1", y = "stat", group = "group", order = "grouped_y", dot_size = 3.5, line_size = 0.8, y_title = "Value", x_title = "Category", title = "True side-by-side grouped lollipop chart" ) ``` ``` r # Horizontal grouped lollipop chart hlollipop( df = df_grouped, x = "admin1", y = "stat", group = "group", dot_size = 3.5, line_size = 0.8, y_title = "Category", x_title = "Value", title = "Horizontal side-by-side grouped lollipop chart" ) ```