--- output: github_document --- ```{r, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.path = "man/figures/README-", out.width = "100%", warning = FALSE, message = FALSE, dpi = 300, dev.args = list(type = "cairo") ) desc <- read.dcf("DESCRIPTION") desc <- setNames(as.list(desc), colnames(desc)) ``` # `r desc$Package` > `r desc$Title` `visualizeR` proposes some utils to sane colors, ready-to-go color palettes, and a few visualization functions. ## Installation You can install the last version of visualizeR from [GitHub](https://github.com/) with: ```{r, eval = FALSE} # install.packages("devtools") devtools::install_github("gnoblet/visualizeR", build_vignettes = TRUE) ``` ## Roadmap Roadmap is as follows: - [ ] Full revamp of core functions (colors, pattern, incl. adding test and pre-commit structures) - [ ] Add other types of plots: - [ ] Dumbell - [ ] Waffle - [ ] Donut - [ ] Alluvial ## Request Please, do not hesitate to pull request any new viz or colors or color palettes, or to email request any change ([gnoblet\@zaclys.net](mailto:gnoblet@zaclys.net){.email}). ## Colors Functions to access colors and palettes are `color()` or `palette()`. Feel free to pull request new colors. ```{r example-colors, eval = TRUE} library(visualizeR) # Get all saved colors, named color(unname = F)[1:10] # Extract a color palette as hexadecimal codes and reversed palette(palette = "cat_5_main", reversed = TRUE, color_ramp_palette = FALSE) # Get all color palettes names palette(show_palettes = TRUE) ``` ## Charts ### Example 1: Bar chart ```{r example-bar-chart, out.width = '65%', eval = TRUE} library(palmerpenguins) library(dplyr) df <- penguins |> group_by(island, species) |> summarize( mean_bl = mean(bill_length_mm, na.rm = T), mean_fl = mean(flipper_length_mm, na.rm = T) ) |> ungroup() df_island <- penguins |> group_by(island) |> summarize( mean_bl = mean(bill_length_mm, na.rm = T), mean_fl = mean(flipper_length_mm, na.rm = T) ) |> ungroup() # Simple bar chart by group with some alpha transparency bar(df, "island", "mean_bl", "species", x_title = "Mean of bill length", title = "Mean of bill length by island and species") # Flipped / Horizontal hbar(df, "island", "mean_bl", "species", x_title = "Mean of bill length", title = "Mean of bill length by island and species") # Facetted bar(df, "island", "mean_bl", facet = "species", x_title = "Mean of bill length", title = "Mean of bill length by island and species", add_color_guide = FALSE) # Flipped, with text, smaller width, and caption hbar(df = df_island, x = "island", y = "mean_bl", title = "Mean of bill length by island", add_text = T, width = 0.6, add_text_suffix = "mm", add_text_expand_limit = 1.3, add_color_guide = FALSE, caption = "Data: palmerpenguins package.") ``` ### Example 2: Scatterplot ```{r example-point-chart, out.width = '65%', eval = TRUE} # Simple scatterplot point(penguins, "bill_length_mm", "flipper_length_mm") # Scatterplot with grouping colors, greater dot size, some transparency point(penguins, "bill_length_mm", "flipper_length_mm", "island", group_title = "Island", alpha = 0.6, size = 3, title = "Bill vs. flipper length", , add_color_guide = FALSE) # Facetted scatterplot by island point(penguins, "bill_length_mm", "flipper_length_mm", "species", "island", "fixed", group_title = "Species", title = "Bill vs. flipper length by species and island", add_color_guide = FALSE) ``` ### Example 3: Dumbbell plot Remember to ensure that your data are in the long format and you only have two groups on the x-axis; for instance, IDP and returnee and no NA values. ```{r example-dumbbell-plot, out.width = '65%', eval = TRUE} # Prepare long data df <- tibble::tibble( admin1 = rep(letters[1:8], 2), setting = c(rep(c("Rural", "Urban"), 4), rep(c("Urban", "Rural"), 4)), stat = rnorm(16, mean = 50, sd = 18) ) |> dplyr::mutate(stat = round(stat, 0)) # dumbbell( # df, # 'stat', # 'setting', # 'admin1', # title = '% of HHs that reported open defecation as sanitation facility', # group_y_title = 'Admin 1', # group_x_title = 'Setting' # ) ``` ### Example 4: donut chart ```{r example-donut-plot, out.width = '65%', warning = FALSE} # Some summarized data: % of HHs by displacement status df <- tibble::tibble( status = c("Displaced", "Non displaced", "Returnee", "Don't know/Prefer not to say"), percentage = c(18, 65, 12, 3) ) # Donut # donut(df, # status, # percentage, # hole_size = 3, # add_text_suffix = '%', # add_text_color = color('dark_grey'), # add_text_treshold_display = 5, # x_title = 'Displacement status', # title = '% of HHs by displacement status' # ) ``` ### Example 5: Waffle chart ```{r example-waffle-plot, out.width = '65%', warning = FALSE} # # waffle(df, status, percentage, x_title = 'A caption', title = 'A title', subtitle = 'A subtitle') ``` ### Example 6: Alluvial chart ```{r example-alluvial-plot, out.width = '65%', warning = FALSE} # Some summarized data: % of HHs by self-reported status of displacement in 2021 and in 2022 df <- tibble::tibble( status_from = c( rep("Displaced", 4), rep("Non displaced", 4), rep("Returnee", 4), rep("Dnk/Pnts", 4) ), status_to = c("Displaced", "Non displaced", "Returnee", "Dnk/Pnts", "Displaced", "Non displaced", "Returnee", "Dnk/Pnts", "Displaced", "Non displaced", "Returnee", "Dnk/Pnts", "Displaced", "Non displaced", "Returnee", "Dnk/Pnts"), percentage = c(20, 8, 18, 1, 12, 21, 0, 2, 0, 3, 12, 1, 0, 0, 1, 1) ) # Alluvial, here the group is the status for 2021 # alluvial(df, # status_from, # status_to, # percentage, # status_from, # from_levels = c("Displaced", "Non displaced", "Returnee", "Dnk/Pnts"), # alpha = 0.8, # group_title = "Status for 2021", # title = "% of HHs by self-reported status from 2021 to 2022" # ) ``` ### Example 7: Lollipop chart ```{r example-lollipop-chart, out.width = "65%", warning = FALSE, eval = TRUE} library(tidyr) # Prepare long data df <- tibble::tibble( admin1 = replicate(15, sample(letters, 8)) |> t() |> as.data.frame() |> unite("admin1", sep = "") |> dplyr::pull(admin1), stat = rnorm(15, mean = 50, sd = 15) ) |> dplyr::mutate(stat = round(stat, 0)) # Simple vertical lollipop chart lollipop( df = df, x = "admin1", y = "stat", flip = FALSE, dot_size = 3, y_title = "% of HHs", x_title = "Admin 1", title = "% of HHs that received humanitarian assistance" ) # Horizontal lollipop chart with custom colors hlollipop( df = df, x = "admin1", y = "stat", dot_size = 4, line_size = 1, add_color = color("cat_5_main_2"), line_color = color("cat_5_main_4"), y_title = "% of HHs", x_title = "Admin 1", title = "% of HHs that received humanitarian assistance" ) # Create data for grouped lollipop - using set.seed for reproducibility set.seed(123) df_grouped <- tibble::tibble( admin1 = rep(c("A", "B", "C", "D", "E", "F"), 2), group = rep(c("Group A", "Group B"), each = 6), stat = c(rnorm(6, mean = 40, sd = 10), rnorm(6, mean = 60, sd = 10)) ) |> dplyr::mutate(stat = round(stat, 0)) # Grouped lollipop chart with proper side-by-side positioning lollipop( df = df_grouped, x = "admin1", y = "stat", group = "group", order = "grouped_y", dodge_width = 0.8, # Control spacing between grouped lollipops dot_size = 3.5, line_size = 0.8, y_title = "Value", x_title = "Category", title = "True side-by-side grouped lollipop chart" ) # Horizontal grouped lollipop chart hlollipop( df = df_grouped, x = "admin1", y = "stat", group = "group", dodge_width = 0.7, # Narrower spacing for horizontal orientation dot_size = 3.5, line_size = 0.8, y_title = "Category", x_title = "Value", title = "Horizontal side-by-side grouped lollipop chart" ) ``` ## Lollipop Chart Features Lollipop charts offer several advantages: - Clean visualization of point data with connecting lines to a baseline - True side-by-side grouped display for easy comparison between categories - Each lollipop maintains its position from dot to baseline - Customizable appearance with parameters for dot size, line width, and colors - The `dodge_width` parameter controls spacing between grouped lollipops The side-by-side positioning for grouped lollipops makes them visually distinct from dumbbell plots, which typically connect related points on the same line.