Implement models for searx/answerers

sort froms

Import List from typing to support Python 3.8

Use SearchQuery model

Remove list for List

use Dict instead of dict

Use RawTextQuery instead of SearchQuery, type a dict, and remove unecessary str() method in webapp

improve docstring, remove test code

Implement a BaseQuery class and use that, improve answerer tests based on updated types

Add back sys

fix new linting issues

add space

Update answerer.py - use dict

use future annotations

use BaseQuery for RawTextQuery
This commit is contained in:
Grant Lanham 2024-03-09 18:22:35 -05:00
parent e2af3e4970
commit fed105b09e
9 changed files with 95 additions and 32 deletions

View file

@ -1,49 +1,51 @@
# SPDX-License-Identifier: AGPL-3.0-or-later
from __future__ import annotations
from functools import reduce
from operator import mul
from flask_babel import gettext
from typing import Callable
from searx.answerers.models import AnswerDict, AnswerSelfInfoDict
from searx.search.models import BaseQuery
keywords = ('min', 'max', 'avg', 'sum', 'prod')
stastistics_map: dict[str, Callable[[list[float]], float]] = {
'min': lambda args: min(args),
'max': lambda args: max(args),
'avg': lambda args: sum(args) / len(args),
'sum': lambda args: sum(args),
'prod': lambda args: reduce(mul, args, 1),
}
# required answerer function
# can return a list of results (any result type) for a given query
def answer(query):
def answer(query: BaseQuery) -> list[AnswerDict]:
parts = query.query.split()
if len(parts) < 2:
return []
try:
args = list(map(float, parts[1:]))
except:
args: list[float] = list(map(float, parts[1:]))
except Exception:
return []
func = parts[0]
answer = None
if func == 'min':
answer = min(args)
elif func == 'max':
answer = max(args)
elif func == 'avg':
answer = sum(args) / len(args)
elif func == 'sum':
answer = sum(args)
elif func == 'prod':
answer = reduce(mul, args, 1)
if answer is None:
if func not in stastistics_map:
return []
return [{'answer': str(answer)}]
return [{'answer': str(stastistics_map[func](args))}]
# required answerer function
# returns information about the answerer
def self_info():
def self_info() -> AnswerSelfInfoDict:
return {
'name': gettext('Statistics functions'),
'description': gettext('Compute {functions} of the arguments').format(functions='/'.join(keywords)),