New features

This commit is contained in:
araison 2022-12-23 14:28:52 +01:00
parent 7f540f53d7
commit 495cde4c70
5 changed files with 215 additions and 516 deletions

View File

@ -36,267 +36,125 @@ def set_eixgnn_cfg(eixgnn_cfg):
if eixgnn_cfg is None:
return eixgnn_cfg
# ----------------------------------------------------------------------- #
# Basic options
# ----------------------------------------------------------------------- #
# Set print destination: stdout / file / both
eixgnn_cfg.print = "both"
eixgnn_cfg.out_dir = "./explanations"
eixgnn_cfg.cfg_dest = "explaining_config.yaml"
eixgnn_cfg.seed = 0
# ----------------------------------------------------------------------- #
# Dataset options
# ----------------------------------------------------------------------- #
eixgnn_cfg.dataset = CN()
eixgnn_cfg.dataset.name = "Cora"
eixgnn_cfg.run_topological_stat = True
# ----------------------------------------------------------------------- #
# Model options
# ----------------------------------------------------------------------- #
eixgnn_cfg.model = CN()
# Set wether or not load the best model for given dataset or a path
eixgnn_cfg.model.ckpt = "best"
# ----------------------------------------------------------------------- #
# Explainer options
# ----------------------------------------------------------------------- #
eixgnn_cfg.explainer = CN()
# Name of the explaining method
eixgnn_cfg.explainer.name = "EiXGNN"
# Whether or not to provide specific explaining methods configuration or default configuration
eixgnn_cfg.explainer.cfg = "default"
# ----------------------------------------------------------------------- #
# Explaining options
# ----------------------------------------------------------------------- #
# 'ExplanationType : 'model' or 'phenomenon'
eixgnn_cfg.explanation_type = "model"
eixgnn_cfg.model_config = CN()
# Do not modify it, will be handled by dataset , assuming one dataset = one learning task
eixgnn_cfg.model_config.mode = None
# Do not modify it, will be handled by dataset , assuming one dataset = one learning task
eixgnn_cfg.model_config.task_level = None
# Do not modify it, we always assume here that model output are 'raw'
eixgnn_cfg.model_config.return_type = "raw"
eixgnn_cfg.threshold_config = CN()
eixgnn_cfg.threshold_config.threshold_type = None
eixgnn_cfg.threshold_config.value = 0.5
# Set print destination: stdout / file / both
eixgnn_cfg.print = "both"
# Select device: 'cpu', 'cuda', 'auto'
eixgnn_cfg.accelerator = "auto"
# Output directory
eixgnn_cfg.out_dir = "results"
# Config name (in out_dir)
eixgnn_cfg.eixgnn_cfg_dest = "config.yaml"
# Random seed
eixgnn_cfg.seed = 0
# ----------------------------------------------------------------------- #
# Globally shared variables:
# These variables will be set dynamically based on the input dataset
# Do not directly set them here or in .yaml files
# ----------------------------------------------------------------------- #
eixgnn_cfg.share = CN()
# Size of input dimension
eixgnn_cfg.share.dim_in = 1
# Size of out dimension, i.e., number of labels to be predicted
eixgnn_cfg.share.dim_out = 1
# Number of dataset splits: train/val/test
eixgnn_cfg.share.num_splits = 1
# ----------------------------------------------------------------------- #
# Dataset options
# ----------------------------------------------------------------------- #
eixgnn_cfg.dataset = CN()
# Name of the dataset
eixgnn_cfg.dataset.name = "Cora"
# if PyG: look for it in Pytorch Geometric dataset
# if NetworkX/nx: load data in NetworkX format
# Dir to load the dataset. If the dataset is downloaded, this is the
# cache dir
eixgnn_cfg.dataset.dir = "./datasets"
# ----------------------------------------------------------------------- #
# Memory options
# ----------------------------------------------------------------------- #
eixgnn_cfg.mem = CN()
# Perform ReLU inplace
eixgnn_cfg.mem.inplace = False
# Set user customized eixgnn_cfgs
for func in register.config_dict.values():
func(eixgnn_cfg)
eixgnn_cfg.L = 50
eixgnn_cfg.p = 0.5
eixgnn_cfg.importance_sampling_strategy = "node"
eixgnn_cfg.domain_similarity = "relative_edge_density"
eixgnn_cfg.signal_similarity = "KL"
eixgnn_cfg.shapley_value_approx = 100
def assert_eixgnn_cfg(eixgnn_cfg):
r"""Checks config values, do necessary post processing to the configs"""
if eixgnn_cfg.dataset.task not in ["node", "edge", "graph", "link_pred"]:
raise ValueError(
"Task {} not supported, must be one of node, "
"edge, graph, link_pred".format(eixgnn_cfg.dataset.task)
)
if (
"classification" in eixgnn_cfg.dataset.task_type
and eixgnn_cfg.model.loss_fun == "mse"
):
eixgnn_cfg.model.loss_fun = "cross_entropy"
logging.warning("model.loss_fun changed to cross_entropy for classification.")
if (
eixgnn_cfg.dataset.task_type == "regression"
and eixgnn_cfg.model.loss_fun == "cross_entropy"
):
eixgnn_cfg.model.loss_fun = "mse"
logging.warning("model.loss_fun changed to mse for regression.")
if eixgnn_cfg.dataset.task == "graph" and eixgnn_cfg.dataset.transductive:
eixgnn_cfg.dataset.transductive = False
logging.warning("dataset.transductive changed " "to False for graph task.")
if eixgnn_cfg.gnn.layers_post_mp < 1:
eixgnn_cfg.gnn.layers_post_mp = 1
logging.warning("Layers after message passing should be >=1")
if eixgnn_cfg.gnn.head == "default":
eixgnn_cfg.gnn.head = eixgnn_cfg.dataset.task
eixgnn_cfg.run_dir = eixgnn_cfg.out_dir
def dump_eixgnn_cfg(eixgnn_cfg):
r"""
Dumps the config to the output directory specified in
:obj:`eixgnn_cfg.out_dir`
Args:
eixgnn_cfg (CfgNode): Configuration node
"""
makedirs(eixgnn_cfg.out_dir)
eixgnn_cfg_file = os.path.join(eixgnn_cfg.out_dir, eixgnn_cfg.eixgnn_cfg_dest)
with open(eixgnn_cfg_file, "w") as f:
eixgnn_cfg.dump(stream=f)
def load_eixgnn_cfg(eixgnn_cfg, args):
r"""
Load configurations from file system and command line
Args:
eixgnn_cfg (CfgNode): Configuration node
args (ArgumentParser): Command argument parser
"""
eixgnn_cfg.merge_from_file(args.eixgnn_cfg_file)
eixgnn_cfg.merge_from_list(args.opts)
assert_eixgnn_cfg(eixgnn_cfg)
def makedirs_rm_exist(dir):
if os.path.isdir(dir):
shutil.rmtree(dir)
os.makedirs(dir, exist_ok=True)
def get_fname(fname):
r"""
Extract filename from file name path
Args:
fname (string): Filename for the yaml format configuration file
"""
fname = fname.split("/")[-1]
if fname.endswith(".yaml"):
fname = fname[:-5]
elif fname.endswith(".yml"):
fname = fname[:-4]
return fname
def set_out_dir(out_dir, fname):
r"""
Create the directory for full experiment run
Args:
out_dir (string): Directory for output, specified in :obj:`eixgnn_cfg.out_dir`
fname (string): Filename for the yaml format configuration file
"""
fname = get_fname(fname)
eixgnn_cfg.out_dir = os.path.join(out_dir, fname)
# Make output directory
if eixgnn_cfg.train.auto_resume:
os.makedirs(eixgnn_cfg.out_dir, exist_ok=True)
else:
makedirs_rm_exist(eixgnn_cfg.out_dir)
def set_run_dir(out_dir):
r"""
Create the directory for each random seed experiment run
Args:
out_dir (string): Directory for output, specified in :obj:`eixgnn_cfg.out_dir`
fname (string): Filename for the yaml format configuration file
"""
eixgnn_cfg.run_dir = os.path.join(out_dir, str(eixgnn_cfg.seed))
# Make output directory
if eixgnn_cfg.train.auto_resume:
os.makedirs(eixgnn_cfg.run_dir, exist_ok=True)
else:
makedirs_rm_exist(eixgnn_cfg.run_dir)
if not (0 <= eixgnn_cfg.p and eixgnn_cfg.p <= 1):
raise ValueError("p needs to be between 0 and 1")
set_eixgnn_cfg(eixgnn_cfg)
def from_config(func):
if inspect.isclass(func):
params = list(inspect.signature(func.__init__).parameters.values())[1:]
else:
params = list(inspect.signature(func).parameters.values())
arg_names = [p.name for p in params]
has_defaults = [p.default != inspect.Parameter.empty for p in params]
@functools.wraps(func)
def wrapper(*args, eixgnn_cfg: Any = None, **kwargs):
if eixgnn_cfg is not None:
eixgnn_cfg = (
dict(eixgnn_cfg)
if isinstance(eixgnn_cfg, Iterable)
else asdict(eixgnn_cfg)
)
iterator = zip(arg_names[len(args) :], has_defaults[len(args) :])
for arg_name, has_default in iterator:
if arg_name in kwargs:
continue
elif arg_name in eixgnn_cfg:
kwargs[arg_name] = eixgnn_cfg[arg_name]
elif not has_default:
raise ValueError(f"'eixgnn_cfg.{arg_name}' undefined")
return func(*args, **kwargs)
return wrapper
# def dump_eixgnn_cfg(eixgnn_cfg,path):
# r"""
# Dumps the config to the output directory specified in
# :obj:`eixgnn_cfg.out_dir`
# Args:
# eixgnn_cfg (CfgNode): Configuration node
# """
# makedirs(eixgnn_cfg.out_dir)
# eixgnn_cfg_file = os.path.join(eixgnn_cfg.out_dir, eixgnn_cfg.eixgnn_cfg_dest)
# with open(eixgnn_cfg_file, "w") as f:
# eixgnn_cfg.dump(stream=f)
#
#
# def load_eixgnn_cfg(eixgnn_cfg, args):
# r"""
# Load configurations from file system and command line
# Args:
# eixgnn_cfg (CfgNode): Configuration node
# args (ArgumentParser): Command argument parser
# """
# eixgnn_cfg.merge_from_file(args.eixgnn_cfg_file)
# eixgnn_cfg.merge_from_list(args.opts)
# assert_eixgnn_cfg(eixgnn_cfg)
#
#
# def makedirs_rm_exist(dir):
# if os.path.isdir(dir):
# shutil.rmtree(dir)
# os.makedirs(dir, exist_ok=True)
#
#
# def get_fname(fname):
# r"""
# Extract filename from file name path
# Args:
# fname (string): Filename for the yaml format configuration file
# """
# fname = fname.split("/")[-1]
# if fname.endswith(".yaml"):
# fname = fname[:-5]
# elif fname.endswith(".yml"):
# fname = fname[:-4]
# return fname
#
#
# def set_out_dir(out_dir, fname):
# r"""
# Create the directory for full experiment run
# Args:
# out_dir (string): Directory for output, specified in :obj:`eixgnn_cfg.out_dir`
# fname (string): Filename for the yaml format configuration file
# """
# fname = get_fname(fname)
# eixgnn_cfg.out_dir = os.path.join(out_dir, fname)
# Make output directory
# if eixgnn_cfg.train.auto_resume:
# os.makedirs(eixgnn_cfg.out_dir, exist_ok=True)
# else:
# makedirs_rm_exist(eixgnn_cfg.out_dir)
#
#
# def set_run_dir(out_dir):
# r"""
# Create the directory for each random seed experiment run
# Args:
# out_dir (string): Directory for output, specified in :obj:`eixgnn_cfg.out_dir`
# fname (string): Filename for the yaml format configuration file
# """
# eixgnn_cfg.run_dir = os.path.join(out_dir, str(eixgnn_cfg.seed))
# Make output directory
# if eixgnn_cfg.train.auto_resume:
# os.makedirs(eixgnn_cfg.run_dir, exist_ok=True)
# else:
# makedirs_rm_exist(eixgnn_cfg.run_dir)
#
#
# def from_config(func):
# if inspect.isclass(func):
# params = list(inspect.signature(func.__init__).parameters.values())[1:]
# else:
# params = list(inspect.signature(func).parameters.values())
#
# arg_names = [p.name for p in params]
# has_defaults = [p.default != inspect.Parameter.empty for p in params]
#
# @functools.wraps(func)
# def wrapper(*args, eixgnn_cfg: Any = None, **kwargs):
# if eixgnn_cfg is not None:
# eixgnn_cfg = (
# dict(eixgnn_cfg)
# if isinstance(eixgnn_cfg, Iterable)
# else asdict(eixgnn_cfg)
# )
#
# iterator = zip(arg_names[len(args) :], has_defaults[len(args) :])
# for arg_name, has_default in iterator:
# if arg_name in kwargs:
# continue
# elif arg_name in eixgnn_cfg:
# kwargs[arg_name] = eixgnn_cfg[arg_name]
# elif not has_default:
# raise ValueError(f"'eixgnn_cfg.{arg_name}' undefined")
# return func(*args, **kwargs)
#
# return wrapper

View File

@ -14,9 +14,9 @@ from torch_geometric.data.makedirs import makedirs
try: # Define global config object
from yacs.config import CfgNode as CN
explaining_cfg = CN()
scgnn_cfg = CN()
except ImportError:
explaining_cfg = None
scgnn_cfg = None
warnings.warn(
"Could not define global config object. Please install "
"'yacs' for using the GraphGym experiment manager via "
@ -24,199 +24,64 @@ except ImportError:
)
def set_explaining_cfg(explaining_cfg):
def set_scgnn_cfg(scgnn_cfg):
r"""
This function sets the default config value.
1) Note that for an experiment, only part of the arguments will be used
The remaining unused arguments won't affect anything.
So feel free to register any argument in graphgym.contrib.config
2) We support *at most* two levels of configs, e.g., explaining_cfg.dataset.name
2) We support *at most* two levels of configs, e.g., scgnn_cfg.dataset.name
:return: configuration use by the experiment.
"""
if explaining_cfg is None:
return explaining_cfg
if scgnn_cfg is None:
return scgnn_cfg
# ----------------------------------------------------------------------- #
# Basic options
# ----------------------------------------------------------------------- #
# Set print destination: stdout / file / both
explaining_cfg.print = "both"
explaining_cfg.out_dir = "./explanations"
explaining_cfg.cfg_dest = "explaining_config.yaml"
explaining_cfg.seed = 0
# ----------------------------------------------------------------------- #
# Dataset options
# ----------------------------------------------------------------------- #
explaining_cfg.dataset = CN()
explaining_cfg.dataset.name = "Cora"
explaining_cfg.run_topological_stat = True
# ----------------------------------------------------------------------- #
# Model options
# ----------------------------------------------------------------------- #
explaining_cfg.model = CN()
# Set wether or not load the best model for given dataset or a path
explaining_cfg.model.ckpt = "best"
# ----------------------------------------------------------------------- #
# Explainer options
# ----------------------------------------------------------------------- #
explaining_cfg.explainer = CN()
# Name of the explaining method
explaining_cfg.explainer.name = "EiXGNN"
# Whether or not to provide specific explaining methods configuration or default configuration
explaining_cfg.explainer.cfg = "default"
# ----------------------------------------------------------------------- #
# Explaining options
# ----------------------------------------------------------------------- #
# 'ExplanationType : 'model' or 'phenomenon'
explaining_cfg.explanation_type = "model"
explaining_cfg.model_config = CN()
# Do not modify it, will be handled by dataset , assuming one dataset = one learning task
explaining_cfg.model_config.mode = None
# Do not modify it, will be handled by dataset , assuming one dataset = one learning task
explaining_cfg.model_config.task_level = None
# Do not modify it, we always assume here that model output are 'raw'
explaining_cfg.model_config.return_type = "raw"
explaining_cfg.threshold_config = CN()
explaining_cfg.threshold_config.threshold_type = None
explaining_cfg.threshold_config.value = 0.5
# Set print destination: stdout / file / both
explaining_cfg.print = "both"
# Select device: 'cpu', 'cuda', 'auto'
explaining_cfg.accelerator = "auto"
# Output directory
explaining_cfg.out_dir = "results"
# Config name (in out_dir)
explaining_cfg.explaining_cfg_dest = "config.yaml"
# Random seed
explaining_cfg.seed = 0
# ----------------------------------------------------------------------- #
# Globally shared variables:
# These variables will be set dynamically based on the input dataset
# Do not directly set them here or in .yaml files
# ----------------------------------------------------------------------- #
explaining_cfg.share = CN()
# Size of input dimension
explaining_cfg.share.dim_in = 1
# Size of out dimension, i.e., number of labels to be predicted
explaining_cfg.share.dim_out = 1
# Number of dataset splits: train/val/test
explaining_cfg.share.num_splits = 1
# ----------------------------------------------------------------------- #
# Dataset options
# ----------------------------------------------------------------------- #
explaining_cfg.dataset = CN()
# Name of the dataset
explaining_cfg.dataset.name = "Cora"
# if PyG: look for it in Pytorch Geometric dataset
# if NetworkX/nx: load data in NetworkX format
# Dir to load the dataset. If the dataset is downloaded, this is the
# cache dir
explaining_cfg.dataset.dir = "./datasets"
# ----------------------------------------------------------------------- #
# Memory options
# ----------------------------------------------------------------------- #
explaining_cfg.mem = CN()
# Perform ReLU inplace
explaining_cfg.mem.inplace = False
# Set user customized explaining_cfgs
for func in register.config_dict.values():
func(explaining_cfg)
scgnn_cfg.depth = 'all'
scgnn_cfg.interest_map_norm = True
scgnn_cfg.score_map_norm = True
def assert_explaining_cfg(explaining_cfg):
r"""Checks config values, do necessary post processing to the configs"""
if explaining_cfg.dataset.task not in ["node", "edge", "graph", "link_pred"]:
def assert_scgnn_cfg(scgnn_cfg):
r"""Checks config values, do necessary post processing to the configs
TODO
"""
if scgnn_cfg. not in ["node", "edge", "graph", "link_pred"]:
raise ValueError(
"Task {} not supported, must be one of node, "
"edge, graph, link_pred".format(explaining_cfg.dataset.task)
"edge, graph, link_pred".format(scgnn_cfg.dataset.task)
)
if (
"classification" in explaining_cfg.dataset.task_type
and explaining_cfg.model.loss_fun == "mse"
):
explaining_cfg.model.loss_fun = "cross_entropy"
logging.warning("model.loss_fun changed to cross_entropy for classification.")
if (
explaining_cfg.dataset.task_type == "regression"
and explaining_cfg.model.loss_fun == "cross_entropy"
):
explaining_cfg.model.loss_fun = "mse"
logging.warning("model.loss_fun changed to mse for regression.")
if explaining_cfg.dataset.task == "graph" and explaining_cfg.dataset.transductive:
explaining_cfg.dataset.transductive = False
logging.warning("dataset.transductive changed " "to False for graph task.")
if explaining_cfg.gnn.layers_post_mp < 1:
explaining_cfg.gnn.layers_post_mp = 1
logging.warning("Layers after message passing should be >=1")
if explaining_cfg.gnn.head == "default":
explaining_cfg.gnn.head = explaining_cfg.dataset.task
explaining_cfg.run_dir = explaining_cfg.out_dir
scgnn_cfg.run_dir = scgnn_cfg.out_dir
def dump_explaining_cfg(explaining_cfg):
def dump_scgnn_cfg(scgnn_cfg,path):
r"""
TODO
Dumps the config to the output directory specified in
:obj:`explaining_cfg.out_dir`
:obj:`scgnn_cfg.out_dir`
Args:
explaining_cfg (CfgNode): Configuration node
scgnn_cfg (CfgNode): Configuration node
"""
makedirs(explaining_cfg.out_dir)
explaining_cfg_file = os.path.join(
explaining_cfg.out_dir, explaining_cfg.explaining_cfg_dest
makedirs(scgnn_cfg.out_dir)
scgnn_cfg_file = os.path.join(
scgnn_cfg.out_dir, scgnn_cfg.scgnn_cfg_dest
)
with open(explaining_cfg_file, "w") as f:
explaining_cfg.dump(stream=f)
with open(scgnn_cfg_file, "w") as f:
scgnn_cfg.dump(stream=f)
def load_explaining_cfg(explaining_cfg, args):
def load_scgnn_cfg(scgnn_cfg, args):
r"""
Load configurations from file system and command line
Args:
explaining_cfg (CfgNode): Configuration node
scgnn_cfg (CfgNode): Configuration node
args (ArgumentParser): Command argument parser
"""
explaining_cfg.merge_from_file(args.explaining_cfg_file)
explaining_cfg.merge_from_list(args.opts)
assert_explaining_cfg(explaining_cfg)
scgnn_cfg.merge_from_file(args.scgnn_cfg_file)
scgnn_cfg.merge_from_list(args.opts)
assert_scgnn_cfg(scgnn_cfg)
def makedirs_rm_exist(dir):
@ -243,34 +108,34 @@ def set_out_dir(out_dir, fname):
r"""
Create the directory for full experiment run
Args:
out_dir (string): Directory for output, specified in :obj:`explaining_cfg.out_dir`
out_dir (string): Directory for output, specified in :obj:`scgnn_cfg.out_dir`
fname (string): Filename for the yaml format configuration file
"""
fname = get_fname(fname)
explaining_cfg.out_dir = os.path.join(out_dir, fname)
scgnn_cfg.out_dir = os.path.join(out_dir, fname)
# Make output directory
if explaining_cfg.train.auto_resume:
os.makedirs(explaining_cfg.out_dir, exist_ok=True)
if scgnn_cfg.train.auto_resume:
os.makedirs(scgnn_cfg.out_dir, exist_ok=True)
else:
makedirs_rm_exist(explaining_cfg.out_dir)
makedirs_rm_exist(scgnn_cfg.out_dir)
def set_run_dir(out_dir):
r"""
Create the directory for each random seed experiment run
Args:
out_dir (string): Directory for output, specified in :obj:`explaining_cfg.out_dir`
out_dir (string): Directory for output, specified in :obj:`scgnn_cfg.out_dir`
fname (string): Filename for the yaml format configuration file
"""
explaining_cfg.run_dir = os.path.join(out_dir, str(explaining_cfg.seed))
scgnn_cfg.run_dir = os.path.join(out_dir, str(scgnn_cfg.seed))
# Make output directory
if explaining_cfg.train.auto_resume:
os.makedirs(explaining_cfg.run_dir, exist_ok=True)
if scgnn_cfg.train.auto_resume:
os.makedirs(scgnn_cfg.run_dir, exist_ok=True)
else:
makedirs_rm_exist(explaining_cfg.run_dir)
makedirs_rm_exist(scgnn_cfg.run_dir)
set_explaining_cfg(explaining_cfg)
set_scgnn_cfg(scgnn_cfg)
def from_config(func):
@ -283,22 +148,22 @@ def from_config(func):
has_defaults = [p.default != inspect.Parameter.empty for p in params]
@functools.wraps(func)
def wrapper(*args, explaining_cfg: Any = None, **kwargs):
if explaining_cfg is not None:
explaining_cfg = (
dict(explaining_cfg)
if isinstance(explaining_cfg, Iterable)
else asdict(explaining_cfg)
def wrapper(*args, scgnn_cfg: Any = None, **kwargs):
if scgnn_cfg is not None:
scgnn_cfg = (
dict(scgnn_cfg)
if isinstance(scgnn_cfg, Iterable)
else asdict(scgnn_cfg)
)
iterator = zip(arg_names[len(args) :], has_defaults[len(args) :])
for arg_name, has_default in iterator:
if arg_name in kwargs:
continue
elif arg_name in explaining_cfg:
kwargs[arg_name] = explaining_cfg[arg_name]
elif arg_name in scgnn_cfg:
kwargs[arg_name] = scgnn_cfg[arg_name]
elif not has_default:
raise ValueError(f"'explaining_cfg.{arg_name}' undefined")
raise ValueError(f"'scgnn_cfg.{arg_name}' undefined")
return func(*args, **kwargs)
return wrapper

View File

@ -24,7 +24,7 @@ except ImportError:
)
def set_explaining_cfg(explaining_cfg):
def set_cfg(explaining_cfg):
r"""
This function sets the default config value.
1) Note that for an experiment, only part of the arguments will be used
@ -110,89 +110,23 @@ def set_explaining_cfg(explaining_cfg):
# Select device: 'cpu', 'cuda', 'auto'
explaining_cfg.accelerator = "auto"
# Output directory
explaining_cfg.out_dir = "results"
# Config name (in out_dir)
explaining_cfg.explaining_cfg_dest = "config.yaml"
# Random seed
explaining_cfg.seed = 0
# ----------------------------------------------------------------------- #
# Globally shared variables:
# These variables will be set dynamically based on the input dataset
# Do not directly set them here or in .yaml files
# ----------------------------------------------------------------------- #
explaining_cfg.share = CN()
# Size of input dimension
explaining_cfg.share.dim_in = 1
# Size of out dimension, i.e., number of labels to be predicted
explaining_cfg.share.dim_out = 1
# Number of dataset splits: train/val/test
explaining_cfg.share.num_splits = 1
# ----------------------------------------------------------------------- #
# Dataset options
# ----------------------------------------------------------------------- #
explaining_cfg.dataset = CN()
# Name of the dataset
explaining_cfg.dataset.name = "Cora"
# if PyG: look for it in Pytorch Geometric dataset
# if NetworkX/nx: load data in NetworkX format
# Dir to load the dataset. If the dataset is downloaded, this is the
# cache dir
explaining_cfg.dataset.dir = "./datasets"
# ----------------------------------------------------------------------- #
# Memory options
# ----------------------------------------------------------------------- #
explaining_cfg.mem = CN()
# Perform ReLU inplace
explaining_cfg.mem.inplace = False
# Set user customized explaining_cfgs
for func in register.config_dict.values():
func(explaining_cfg)
explaining_cfg.relu_and_normalize = True
def assert_explaining_cfg(explaining_cfg):
def assert_cfg(explaining_cfg):
r"""Checks config values, do necessary post processing to the configs"""
if explaining_cfg.dataset.task not in ["node", "edge", "graph", "link_pred"]:
raise ValueError(
"Task {} not supported, must be one of node, "
"edge, graph, link_pred".format(explaining_cfg.dataset.task)
)
if (
"classification" in explaining_cfg.dataset.task_type
and explaining_cfg.model.loss_fun == "mse"
):
explaining_cfg.model.loss_fun = "cross_entropy"
logging.warning("model.loss_fun changed to cross_entropy for classification.")
if (
explaining_cfg.dataset.task_type == "regression"
and explaining_cfg.model.loss_fun == "cross_entropy"
):
explaining_cfg.model.loss_fun = "mse"
logging.warning("model.loss_fun changed to mse for regression.")
if explaining_cfg.dataset.task == "graph" and explaining_cfg.dataset.transductive:
explaining_cfg.dataset.transductive = False
logging.warning("dataset.transductive changed " "to False for graph task.")
if explaining_cfg.gnn.layers_post_mp < 1:
explaining_cfg.gnn.layers_post_mp = 1
logging.warning("Layers after message passing should be >=1")
if explaining_cfg.gnn.head == "default":
explaining_cfg.gnn.head = explaining_cfg.dataset.task
explaining_cfg.run_dir = explaining_cfg.out_dir
def dump_explaining_cfg(explaining_cfg):
def dump_cfg(explaining_cfg):
r"""
Dumps the config to the output directory specified in
:obj:`explaining_cfg.out_dir`
@ -207,7 +141,7 @@ def dump_explaining_cfg(explaining_cfg):
explaining_cfg.dump(stream=f)
def load_explaining_cfg(explaining_cfg, args):
def load_cfg(explaining_cfg, args):
r"""
Load configurations from file system and command line
Args:
@ -270,7 +204,7 @@ def set_run_dir(out_dir):
makedirs_rm_exist(explaining_cfg.run_dir)
set_explaining_cfg(explaining_cfg)
set_cfg(explaining_cfg)
def from_config(func):

View File

@ -0,0 +1,41 @@
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import logging
import os
import json
import glob
import torch
from torch_geometric.graphgym.model_builder import create_model
from torch_geometric.graphgym.train import GraphGymDataModule
MODEL_STATE = "model_state"
OPTIMIZER_STATE = "optimizer_state"
SCHEDULER_STATE = "scheduler_state"
def load_ckpt(
model: torch.nn.Module,
ckpt_path: str,
) -> torch.nn.Module:
r"""Loads the model at given checkpoint."""
if not osp.exists(path):
return None
ckpt = torch.load(ckpt_path)
model.load_state_dict(ckpt[MODEL_STATE])
return model
def load_best_given_exp(path_to_xp:str, wrt_metric:str:'val')->str:
path = os.path.normpath(path)
path.split(os.sep)
for path in glob.glob(os.path.join(path_to_xp,'[0-9]'*10,wrt_metric,'stats.json')):
print(path)

View File

@ -43,6 +43,7 @@ def load_explanation(path: str) -> Explanation:
def normalize_explanation_masks(exp: Explanation, p: str = "inf") -> Explanation:
exp = copy.copy(exp)
data = exp.to_dict()
for k, v in data.items():
if "_mask" in k and isinstance(v, torch.FloatTensor):