🏭 End-to-end pipeline that builds and runs experiments for assessing explaining methods suited for Graph Neural Networks.
				
			
		| explaining_framework | ||
| .coveragerc | ||
| .gitignore | ||
| .gitkeep | ||
| AUTHORS.md | ||
| CHANGELOG.md | ||
| config_gen.py | ||
| CONTRIBUTING.md | ||
| LICENCE | ||
| main.py | ||
| Makefile | ||
| parallel.sh | ||
| README.md | ||
| requirements.txt | ||
| setup.cfg | ||
| setup.py | ||
| stat_parser.py | ||
Explaining framework
PyTorch-Geometric add-on for heavy and parallel experiments running to explain Graph Neural Networks models.  Based on a config.yaml file that you can set up as you wish, the framework do preprocess, handles simultaneous experiments as well as postprocess operations on his own.
How to
- Set up your experiment details (dataset, GNN architecture, explaining method, metrics, GPU workload limit, etc.).
 # ----------------------------------------------------------------------- #
    # Basic options
    # ----------------------------------------------------------------------- #
    # Set print destination: stdout / file / both
    explaining_cfg.print = "both"
    explaining_cfg.out_dir = "./explanations"
    explaining_cfg.cfg_dest = "explaining_config.yaml"
    explaining_cfg.seed = 0
    # ----------------------------------------------------------------------- #
    # Dataset options
    # ----------------------------------------------------------------------- #
    explaining_cfg.dataset = CN()
    explaining_cfg.dataset.name = "Cora"
    explaining_cfg.dataset.item = []
    # ----------------------------------------------------------------------- #
    # Model options
    # ----------------------------------------------------------------------- #
    explaining_cfg.model = CN()
    # Set wether or not load the best model for given dataset or a path
    explaining_cfg.model.ckpt = "best"
    # Setting the path of models folder
    explaining_cfg.model.path = "path"
    # ----------------------------------------------------------------------- #
    # Explainer options
    # ----------------------------------------------------------------------- #
    explaining_cfg.explainer = CN()
    # Name of the explaining method
    explaining_cfg.explainer.name = "EiXGNN"
    # Whether or not to provide specific explaining methods configuration or default configuration
    explaining_cfg.explainer.cfg = "default"
    # Whether or not recomputing explanation if they already exist
    explaining_cfg.explainer.force = False
    # ----------------------------------------------------------------------- #
    # Explaining options
    # ----------------------------------------------------------------------- #
    # 'ExplanationType : 'model' or 'phenomenon'
    explaining_cfg.explanation_type = "model"
    explaining_cfg.model_config = CN()
    # Do not modify it, will be handled by dataset , assuming one dataset = one learning task
    explaining_cfg.model_config.mode = "regression"
    # Do not modify it, will be handled by dataset , assuming one dataset = one learning task
    explaining_cfg.model_config.task_level = None
    # Do not modify it, we always assume here that model output are 'raw'
    explaining_cfg.model_config.return_type = "raw"
    # ----------------------------------------------------------------------- #
    # Thresholding options
    # ----------------------------------------------------------------------- #
    explaining_cfg.threshold = CN()
    explaining_cfg.threshold.config = CN()
    explaining_cfg.threshold.config.type = "all"
    explaining_cfg.threshold.value = CN()
    explaining_cfg.threshold.value.hard = [(i * 10) / 100 for i in range(10)]
    explaining_cfg.threshold.value.topk = [2, 3, 5, 10, 20, 30, 50]
    # which objectives metrics to computes, either all or one in particular if implemented
    explaining_cfg.metrics = CN()
    explaining_cfg.metrics.sparsity = CN()
    explaining_cfg.metrics.sparsity.name = "all"
    explaining_cfg.metrics.fidelity = CN()
    explaining_cfg.metrics.fidelity.name = "all"
    explaining_cfg.metrics.accuracy = CN()
    explaining_cfg.metrics.accuracy.name = "all"
    # Whether or not recomputing metrics if they already exist
    explaining_cfg.adjust = CN()
    explaining_cfg.adjust.strategy = "rpns"
    explaining_cfg.attack = CN()
    explaining_cfg.attack.name = "all"
    # Select device: 'cpu', 'cuda', 'auto'
    explaining_cfg.accelerator = "auto"
- 
Provide the generated .yamlfile tomain.pyor a folder path to a configs file stack for parallel running.
- 
Run 
- 
Check already post-processed (statistics, plots) results. 
