4.2 KiB
4.2 KiB
Explaining framework
PyTorch-Geometric add-on for heavy and parallel experiments running to explain Graph Neural Networks models. Based on a config.yaml
file that you can set up as you wish, the framework do preprocess, handles simultaneous experiments as well as postprocess operations on his own.
How to
- Set up your experiment details (dataset, GNN architecture, explaining method, metrics, GPU workload limit, etc.).
# ----------------------------------------------------------------------- #
# Basic options
# ----------------------------------------------------------------------- #
# Set print destination: stdout / file / both
explaining_cfg.print = "both"
explaining_cfg.out_dir = "./explanations"
explaining_cfg.cfg_dest = "explaining_config.yaml"
explaining_cfg.seed = 0
# ----------------------------------------------------------------------- #
# Dataset options
# ----------------------------------------------------------------------- #
explaining_cfg.dataset = CN()
explaining_cfg.dataset.name = "Cora"
explaining_cfg.dataset.item = []
# ----------------------------------------------------------------------- #
# Model options
# ----------------------------------------------------------------------- #
explaining_cfg.model = CN()
# Set wether or not load the best model for given dataset or a path
explaining_cfg.model.ckpt = "best"
# Setting the path of models folder
explaining_cfg.model.path = "path"
# ----------------------------------------------------------------------- #
# Explainer options
# ----------------------------------------------------------------------- #
explaining_cfg.explainer = CN()
# Name of the explaining method
explaining_cfg.explainer.name = "EiXGNN"
# Whether or not to provide specific explaining methods configuration or default configuration
explaining_cfg.explainer.cfg = "default"
# Whether or not recomputing explanation if they already exist
explaining_cfg.explainer.force = False
# ----------------------------------------------------------------------- #
# Explaining options
# ----------------------------------------------------------------------- #
# 'ExplanationType : 'model' or 'phenomenon'
explaining_cfg.explanation_type = "model"
explaining_cfg.model_config = CN()
# Do not modify it, will be handled by dataset , assuming one dataset = one learning task
explaining_cfg.model_config.mode = "regression"
# Do not modify it, will be handled by dataset , assuming one dataset = one learning task
explaining_cfg.model_config.task_level = None
# Do not modify it, we always assume here that model output are 'raw'
explaining_cfg.model_config.return_type = "raw"
# ----------------------------------------------------------------------- #
# Thresholding options
# ----------------------------------------------------------------------- #
explaining_cfg.threshold = CN()
explaining_cfg.threshold.config = CN()
explaining_cfg.threshold.config.type = "all"
explaining_cfg.threshold.value = CN()
explaining_cfg.threshold.value.hard = [(i * 10) / 100 for i in range(10)]
explaining_cfg.threshold.value.topk = [2, 3, 5, 10, 20, 30, 50]
# which objectives metrics to computes, either all or one in particular if implemented
explaining_cfg.metrics = CN()
explaining_cfg.metrics.sparsity = CN()
explaining_cfg.metrics.sparsity.name = "all"
explaining_cfg.metrics.fidelity = CN()
explaining_cfg.metrics.fidelity.name = "all"
explaining_cfg.metrics.accuracy = CN()
explaining_cfg.metrics.accuracy.name = "all"
# Whether or not recomputing metrics if they already exist
explaining_cfg.adjust = CN()
explaining_cfg.adjust.strategy = "rpns"
explaining_cfg.attack = CN()
explaining_cfg.attack.name = "all"
# Select device: 'cpu', 'cuda', 'auto'
explaining_cfg.accelerator = "auto"
-
Provide the generated
.yaml
file tomain.py
or a folder path to a configs file stack for parallel running. -
Run
-
Check already post-processed (statistics, plots) results.