New fixes

This commit is contained in:
araison 2022-12-13 13:23:01 +01:00
parent 8067185d1a
commit 6cf1d64d3a
2 changed files with 132 additions and 64 deletions

View File

@ -1,3 +1,9 @@
import torch
from captum.attr import (LRP, DeepLift, DeepLiftShap, FeatureAblation,
FeaturePermutation, GradientShap, GuidedBackprop,
GuidedGradCam, InputXGradient, IntegratedGradients,
Lime, Occlusion, Saliency)
from torch import Tensor
from torch_geometric.data import Data
from torch_geometric.explain import Explanation
from torch_geometric.explain.algorithm.base import ExplainerAlgorithm
@ -7,14 +13,9 @@ from torch_geometric.explain.config import (ExplainerConfig, MaskType,
from torch_geometric.nn.models.captum import (_raise_on_invalid_mask_type,
to_captum_input, to_captum_model)
from captum.attr import (LRP, DeepLift, DeepLiftShap, FeatureAblation,
FeaturePermutation, GradientShap, GuidedBackprop,
GuidedGradCam, InputXGradient, IntegratedGradients,
Lime, Occlusion, Saliency)
def _load_FeatureAblation(model):
return lambda model: FeatureAblation(model)
return FeatureAblation(model)
def _load_LRP(model):
@ -43,7 +44,7 @@ def _load_GradientShap(model):
def _load_GuidedBackPropagation(model):
return lambda model: GuidedBackprop(model)
return GuidedBackprop(model)
def _load_GuidedGradCam(model):
@ -52,15 +53,15 @@ def _load_GuidedGradCam(model):
def _load_InputXGradient(model):
return lambda model: InputXGradient(model)
return InputXGradient(model)
def _load_Lime(model):
return lambda model: Lime(model)
return Lime(model)
def _load_Saliency(model):
return lambda model: Saliency(model)
return Saliency(model)
def _load_Occlusion(model):
@ -212,7 +213,7 @@ class CaptumWrapper(ExplainerAlgorithm):
**kwargs,
):
mask_type = self._get_mask_type()
converted_model = to_captum_model(model, mask_type=mask_type, output=target)
converted_model = to_captum_model(model, mask_type=mask_type, output_idx=target)
self.captum_method = self._load_captum_method(converted_model)
inputs, additional_forward_args = to_captum_input(
x, edge_index, mask_type=mask_type

View File

@ -1,10 +1,7 @@
from torch_geometric.data import Data
from torch_geometric.explain import Explanation
from torch_geometric.explain.algorithm.base import ExplainerAlgorithm
from torch_geometric.explain.config import (ExplainerConfig, MaskType,
ModelConfig, ModelMode,
ModelTaskLevel)
import inspect
from typing import Dict, Optional, Tuple, Union
import torch
from graphxai.explainers.cam import CAM, GradCAM
from graphxai.explainers.gnn_explainer import GNNExplainer
from graphxai.explainers.gnn_lrp import GNN_LRP
@ -16,14 +13,22 @@ from graphxai.explainers.pg_explainer import PGExplainer
from graphxai.explainers.pgm_explainer import PGMExplainer
from graphxai.explainers.random import RandomExplainer
from graphxai.explainers.subgraphx import SubgraphX
from torch import Tensor
from torch.nn import CrossEntropyLoss, KLDivLoss, MSELoss
from torch_geometric.data import Data
from torch_geometric.explain import Explanation
from torch_geometric.explain.algorithm.base import ExplainerAlgorithm
from torch_geometric.explain.config import (ExplainerConfig, MaskType,
ModelConfig, ModelMode,
ModelTaskLevel)
def _load_CAM(model):
return lambda model: CAM(model)
return CAM(model)
def _load_GradCAM(model):
return lambda model: GradCAM(model)
return GradCAM(model)
def _load_GNN_LRP(model):
@ -39,48 +44,60 @@ def _load_GuidedBackPropagation(model, criterion):
def _load_IntegratedGradients(model, criterion):
return lambda model: IntegratedGradExplainer(model, criterion)
return IntegratedGradExplainer(model, criterion)
def _load_GradExplainer(model, criterion):
return lambda model: GradExplainer(model, criterion)
return GradExplainer(model, criterion)
def _load_PGExplainer(model, explain_graph=None, in_channels=None):
return lambda model: PGExplainer(
model, explain_graph=explain_graph, in_channels=in_channels
)
return PGExplainer(model, explain_graph=explain_graph, in_channels=in_channels)
def _load_PGMExplainer(model, explain_graph=None):
return lambda model: PGMExplainer(model, explain_graph)
return PGMExplainer(model, explain_graph)
def _load_RandomExplainer(model):
return lambda model: RandomExplainer(model)
return RandomExplainer(model)
def _load_SubgraphX(model):
return lambda model: SubgraphX(model)
return SubgraphX(model)
def _load_GNNExplainer(model):
return lambda model: GNNExplainer(model)
return GNNExplainer(model)
def _load_GraphLIME(model):
return lambda model: GraphLIME(model)
return GraphLIME(model)
class GraphXAIWrapper(ExplainerAlgorithm):
def __init__(self, name, criterion=None, in_channels=None):
def __init__(self, name, **kwargs):
super().__init__()
self.name = name
self.criterion = criterion
self.explain_graph = (
True if self.model_config.task_level == ModelTaskLevel.graph else False
)
self.in_channels = in_channels
self.criterion = self._determine_criterion(kwargs["criterion"])
self.in_channels = self._determine_in_channels(kwargs["in_channels"])
def _determine_criterion(self, criterion):
if criterion == "mse":
loss = MSELoss()
return loss
elif criterion == "cross-entropy":
loss = CrossEntropyLoss()
return loss
else:
raise ValueError(f"{criterion} criterion is not implemented")
def _determine_in_channels(self, in_channels):
if self.name == "PGExplainer":
in_channels = 2 * in_channels
return in_channels
else:
return in_channels
def supports(self) -> bool:
task_level = self.model_config.task_level
@ -122,6 +139,10 @@ class GraphXAIWrapper(ExplainerAlgorithm):
if self.name == "GraphLIME" and task_level == ModelTaskLevel.graph:
return False
self.explain_graph = (
True if self.model_config.task_level == ModelTaskLevel.graph else False
)
return True
def _get_mask_type(self):
@ -158,22 +179,24 @@ class GraphXAIWrapper(ExplainerAlgorithm):
return _load_GNN_LRP(model)
elif self.name == "GradExplainer":
return _load_GradExplainer(model,self.criterion)
return _load_GradExplainer(model, self.criterion)
elif self.name == "GraphLIME":
return _load_GraphLIME(model)
elif self.name == "GuidedBackPropagation":
return _load_GuidedBackPropagation(model,self.criterion)
return _load_GuidedBackPropagation(model, self.criterion)
elif self.name == "IntegratedGradients":
return _load_IntegratedGradients(model,self.criterion)
return _load_IntegratedGradients(model, self.criterion)
elif self.name == "PGExplainer":
return _load_PGExplainer(model,explain_graph=self.explain_graph,in_channels=self.in_channels)
return _load_PGExplainer(
model, explain_graph=self.explain_graph, in_channels=self.in_channels
)
elif self.name == "PGMExplainer":
return _load_PGMExplainer(model,explain_graph=self.explain_graph)
return _load_PGMExplainer(model, explain_graph=self.explain_graph)
elif self.name == "RandomExplainer":
return _load_RandomExplainer(model)
@ -181,45 +204,89 @@ class GraphXAIWrapper(ExplainerAlgorithm):
elif self.name == "SubgraphX":
return _load_SubgraphX(model)
else:
raise ValueError(f"{self.name} is not a supported Captum method yet !")
raise ValueError(f"{self.name} is not supported yet !")
def _parse_attr(self, attr):
if self.mask_type == "node":
node_mask = attr[0].squeeze(0)
edge_mask = None
node_mask, node_feat_mask, edge_mask, edge_feat_mask, = (
None,
None,
None,
None,
)
for k, v in attr.__dict__.items():
if k == "feature_imp":
node_feat_mask = v
if self.mask_type == "edge":
node_mask = None
edge_mask = attr[0]
elif k == "node_imp":
node_mask = v
if self.mask_type == "node_and_edge":
node_mask = attr[0].squeeze(0)
edge_mask = attr[1]
else:
raise ValueError
edge_feat_mask = None
node_feat_mask = None
elif k == "edge_imp":
edge_mask = v
return node_mask, edge_mask, node_feat_mask, edge_feat_mask
def _parse_method_args(self, method, **kwargs):
signature = inspect.signature(method)
args = tuple(
[
kwargs[k.name]
for k in signature.parameters.values()
if k.name in kwargs.keys()
]
)
return args
def forward(
self,
model: torch.nn.Module,
x: Tensor,
edge_index: Tensor,
target: int,
target: Tensor,
index: Optional[Union[int, Tensor]] = None,
target_index: Optional[int] = None,
**kwargs,
):
mask_type = self._get_mask_type()
mask_type = self._get_mask_type()
self.graphxai_method = self._load_graphxai_method(model)
if self.explain_graph:
attr = self.graphxai_method.get_explanation_graph(
attr = self.captum_method.attribute(
inputs=inputs,
additional_forward_args=additional_forward_args,
target=target,
)
# IF CRITERION = MSE:
# if (
# self.name in ["IntegratedGradients", "GradExplainer"]
# and "label" in kwargs.keys()
# ):
# kwargs["label"] = kwargs["label"].float()
if (
self.name in ["PGMExplainer", "RandomExplainer"]
and "label" in kwargs.keys()
):
kwargs.pop("label")
if self.model_config.task_level == ModelTaskLevel.node:
args = self._parse_method_args(
self.graphxai_method.get_explanation_node,
x=x,
edge_index=edge_index,
node_idx=target,
)
attr = self.graphxai_method.get_explanation_node(*args, **kwargs)
elif self.model_config.task_level == ModelTaskLevel.graph:
args = self._parse_method_args(
self.graphxai_method.get_explanation_graph,
x=x,
edge_index=edge_index,
)
attr = self.graphxai_method.get_explanation_graph(*args, **kwargs)
elif self.model_config.task_level == ModelTaskLevel.edge:
args = self._parse_method_args(
self.graphxai_method.get_explanation_link,
x=x,
edge_index=edge_index,
)
attr = self.graphxai_method.get_explanation_link(*args, **kwargs)
else:
raise ValueError(f"{self.model_config.task_level} is not supported yet")
node_mask, edge_mask, node_feat_mask, edge_feat_mask = self._parse_attr(attr)
return Explanation(
x=x,