New fixes and new features

This commit is contained in:
araison 2022-12-13 17:43:01 +01:00
parent 6cf1d64d3a
commit ea0a5dd86e
7 changed files with 154 additions and 40 deletions

View File

@ -1,3 +1,5 @@
import logging
import torch
from captum.attr import (LRP, DeepLift, DeepLiftShap, FeatureAblation,
FeaturePermutation, GradientShap, GuidedBackprop,
@ -96,7 +98,7 @@ class CaptumWrapper(ExplainerAlgorithm):
"Occlusion",
"Saliency",
]:
if task_level not in [ModelTaskLevel.node, ModelTaskLevel.graph]:
if task_level not in [ModelTaskLevel.graph]:
logging.error(f"Task level '{task_level.value}' not supported")
return False
@ -209,11 +211,12 @@ class CaptumWrapper(ExplainerAlgorithm):
model: torch.nn.Module,
x: Tensor,
edge_index: Tensor,
index: int,
target: int,
**kwargs,
):
mask_type = self._get_mask_type()
converted_model = to_captum_model(model, mask_type=mask_type, output_idx=target)
converted_model = to_captum_model(model, mask_type=mask_type, output_idx=index)
self.captum_method = self._load_captum_method(converted_model)
inputs, additional_forward_args = to_captum_input(
x, edge_index, mask_type=mask_type

View File

@ -225,17 +225,6 @@ class GraphXAIWrapper(ExplainerAlgorithm):
return node_mask, edge_mask, node_feat_mask, edge_feat_mask
def _parse_method_args(self, method, **kwargs):
signature = inspect.signature(method)
args = tuple(
[
kwargs[k.name]
for k in signature.parameters.values()
if k.name in kwargs.keys()
]
)
return args
def forward(
self,
model: torch.nn.Module,
@ -243,47 +232,27 @@ class GraphXAIWrapper(ExplainerAlgorithm):
edge_index: Tensor,
target: Tensor,
index: Optional[Union[int, Tensor]] = None,
target_index: Optional[int] = None,
**kwargs,
):
mask_type = self._get_mask_type()
self.graphxai_method = self._load_graphxai_method(model)
# IF CRITERION = MSE:
# if (
# self.name in ["IntegratedGradients", "GradExplainer"]
# and "label" in kwargs.keys()
# ):
# kwargs["label"] = kwargs["label"].float()
if (
self.name in ["PGMExplainer", "RandomExplainer"]
and "label" in kwargs.keys()
):
kwargs.pop("label")
if self.model_config.task_level == ModelTaskLevel.node:
args = self._parse_method_args(
self.graphxai_method.get_explanation_node,
attr = self.graphxai_method.get_explanation_node(
x=x,
edge_index=edge_index,
node_idx=target,
label=target,
node_idx=index,
y=target,
)
attr = self.graphxai_method.get_explanation_node(*args, **kwargs)
elif self.model_config.task_level == ModelTaskLevel.graph:
args = self._parse_method_args(
self.graphxai_method.get_explanation_graph,
attr = self.graphxai_method.get_explanation_graph(
x=x,
edge_index=edge_index,
label=target,
y=target,
)
attr = self.graphxai_method.get_explanation_graph(*args, **kwargs)
elif self.model_config.task_level == ModelTaskLevel.edge:
args = self._parse_method_args(
self.graphxai_method.get_explanation_link,
x=x,
edge_index=edge_index,
)
attr = self.graphxai_method.get_explanation_link(*args, **kwargs)
else:
raise ValueError(f"{self.model_config.task_level} is not supported yet")

View File

@ -0,0 +1,114 @@
import traceback
import torch
import torch.nn as nn
from torch_geometric.data import Batch, Data
from torch_geometric.explain import Explainer
from torch_geometric.nn import GATConv, GCNConv, GINConv, global_mean_pool
from from_captum import CaptumWrapper
from from_graphxai import GraphXAIWrapper
__all__captum = [
"LRP",
"DeepLift",
"DeepLiftShap",
"FeatureAblation",
"FeaturePermutation",
"GradientShap",
"GuidedBackprop",
"GuidedGradCam",
"InputXGradient",
"IntegratedGradients",
"Lime",
"Occlusion",
"Saliency",
]
__all__graphxai = [
"CAM",
"GradCAM",
"GNN_LRP",
"GradExplainer",
"GuidedBackPropagation",
"IntegratedGradients",
"PGExplainer",
"PGMExplainer",
"RandomExplainer",
"SubgraphX",
"GraphMASK",
]
edge_index = torch.tensor([[0, 1, 1, 2], [1, 0, 2, 1]], dtype=torch.long)
size_F = 4
size_O = in_channels = 6
x = torch.ones((3, size_F))
y = torch.tensor([1], dtype=torch.long)
loss = nn.CrossEntropyLoss()
data = Data(x=x, edge_index=edge_index, y=y)
batch = Batch().from_data_list([data])
class Model(torch.nn.Module):
def __init__(self, dim_in, dim_out):
super().__init__()
self.dim_in = dim_in
self.dim_out = dim_out
self.conv = GCNConv(dim_in, dim_out)
def forward(self, x, edge_index):
x = self.conv(x, edge_index)
x = global_mean_pool(x, torch.LongTensor([0]))
return x
model = Model(size_F, size_O)
optimizer = torch.optim.Adam(model.parameters(), lr=0.01, weight_decay=5e-4)
for epoch in range(1, 2):
model.train()
optimizer.zero_grad()
out = model(batch.x, batch.edge_index)
# lossee = loss(out, torch.ones(x.shape[0], size_O))
lossee = loss(out, torch.ones(1, size_O))
lossee.backward()
optimizer.step()
target = torch.LongTensor([[0]])
for kind in ["node"]:
for name in __all__captum + __all__graphxai:
if name in __all__captum:
explaining_algorithm = CaptumWrapper(name)
elif name in __all__graphxai:
explaining_algorithm = GraphXAIWrapper(
name, in_channels=in_channels, criterion="cross-entropy"
)
print(name)
try:
explainer = Explainer(
model=model,
algorithm=explaining_algorithm,
explainer_config=dict(
explanation_type="phenomenon",
node_mask_type="object",
edge_mask_type="object",
),
model_config=dict(
mode="classification",
task_level=kind,
return_type="raw",
),
)
explanation = explainer(
x=batch.x,
edge_index=batch.edge_index,
index=int(target),
target=batch.y,
)
print(explanation.__dict__)
except Exception as e:
print(str(e))
pass

View File

@ -0,0 +1,19 @@
from abc import ABC
class Metric(ABC):
def __init__(self, name: str, model: torch.nn.Module = None, **kwargs):
self.name = name
self.model = model
if is_model_needed and model is None:
raise ValueError(f"{self.name} needs model to perform measurements")
def is_model_needed(self):
if "fidelity" in self.name:
return True
else:
return False
@abstractmethod
def __call__(self, exp: Explanation, **kwargs) -> float:
pass

View File

@ -140,6 +140,15 @@ class GraphStat(object):
name: lambda x, name=name: x.__getattr__(name) if hasattr(x, name) else None
for name in names
}
maps_add_assortativity = {
"assortativity": lambda x: torch_geometric.utils.assortativity(x.edge_index)
}
maps_add_homophily = {
f"homophily_{approach}": lambda x: torch_geometric.utils.homophily(
edge_index=x.edge_index, y=x.y, method=approach
)
for approach in ["edge", "node", "edge_insensitive"]
}
return maps
def __call__(self, data):