Reformating

This commit is contained in:
araison 2023-01-03 17:12:54 +01:00
parent 68449ad678
commit fb012ad723
4 changed files with 321 additions and 85 deletions

View File

@ -1,16 +1,8 @@
import copy
import itertools
from typing import Any
from eixgnn.eixgnn import EiXGNN
from scgnn.scgnn import SCGNN
from torch_geometric.data import Batch, Data
from torch_geometric.explain import Explainer
from torch_geometric.graphgym.config import cfg
from torch_geometric.graphgym.loader import create_dataset
from torch_geometric.graphgym.model_builder import cfg, create_model
from torch_geometric.graphgym.utils.device import auto_select_device
from torch_geometric.loader.dataloader import DataLoader
from explaining_framework.config.explainer_config.eixgnn_config import \
eixgnn_cfg
from explaining_framework.config.explainer_config.scgnn_config import scgnn_cfg
@ -22,8 +14,19 @@ from explaining_framework.metric.accuracy import Accuracy
from explaining_framework.metric.fidelity import Fidelity
from explaining_framework.metric.robust import Attack
from explaining_framework.metric.sparsity import Sparsity
from explaining_framework.stats.graph.graph_stat import GraphStat
from explaining_framework.utils.explaining.load_ckpt import (LoadModelInfo,
_load_ckpt)
from explaining_framework.utils.explanation.adjust import Adjust
from scgnn.scgnn import SCGNN
from torch_geometric.data import Batch, Data
from torch_geometric.explain import Explainer
from torch_geometric.explain.config import ThresholdConfig
from torch_geometric.graphgym.config import cfg
from torch_geometric.graphgym.loader import create_dataset
from torch_geometric.graphgym.model_builder import cfg, create_model
from torch_geometric.graphgym.utils.device import auto_select_device
from torch_geometric.loader.dataloader import DataLoader
all__captum = [
"LRP",
@ -85,6 +88,10 @@ all_robust = [
]
all_sparsity = ["l0"]
adjust_pattern = 'ranp'
all_adjusts_filters = [''.join(filters) for i in range(len(adjust_pattern)+1)for filters in itertools.permutations(adjust_pattern,i)]
all_threshold_type = ['topk_hard','hard','topk']
class ExplainingOutline(object):
def __init__(self, explaining_cfg_path: str):
@ -100,17 +107,65 @@ class ExplainingOutline(object):
self.metrics = None
self.attacks = None
self.model_signature = None
self.indexes = None
self.explaining_algorithm = None
self.explainer = None
self.adjusts = None
self.thresholds_configs = None
self.graphstat = None
self.load_explaining_cfg()
self.load_model_info()
self.load_cfg()
self.load_dataset()
self.load_model()
self.load_model_to_hardware()
self.load_explainer_cfg()
self.load_explaining_algorithm()
self.load_explainer()
self.load_metric()
self.load_attack()
self.load_dataset_to_dataloader()
self.load_indexes()
self.load_adjust()
self.load_threshold()
self.load_graphstat()
def load_model_to_hardware(self):
auto_select_device()
device = self.cfg.accelerator
self.model = self.model.to(device)
def get_data(self):
if self.dataset is None:
self.load_dataset()
try:
item = next(self.dataset)
item = item.to(cfg.accelerator)
return item
except StopIteration:
return None
def load_indexes(self):
if not self.explaining_cfg.dataset.specific_items is None:
indexes = explaining_cfg.dataset.specific_items
else:
indexes = list(range(len(self.dataset)))
self.indexes = iter(indexes)
def get_index(self):
if self.indexes is None:
self.load_indexes()
try:
item = next(self.indexes)
return item
except StopIteration:
return None
def get_item(self):
item = self.get_data()
index = self.get_index()
return item, index
def load_model_info(self):
info = LoadModelInfo(
@ -160,6 +215,7 @@ class ExplainingOutline(object):
self.model = _load_ckpt(self.model, self.model_info["ckpt_path"])
if self.model is None:
raise ValueError("Model ckpt has not been loaded, ckpt file not found")
self.model = self.model.eval()
def load_dataset(self):
if self.cfg is None:
@ -181,7 +237,7 @@ class ExplainingOutline(object):
def load_dataset_to_dataloader(self):
self.dataset = DataLoader(dataset=self.dataset, shuffle=False, batch_size=1)
def load_explainer(self):
def load_explaining_algorithm(self):
self.load_explainer_cfg()
if self.model is None:
self.load_model()
@ -219,54 +275,216 @@ class ExplainingOutline(object):
raise ValueError(f"{name_} Metric is not supported yet")
self.explaining_algorithm = explaining_algorithm
def load_explainer(self):
if self.explaining_algorithm is None:
self.load_explaining_algorithm()
explainer = Explainer(
model=self.model,
algorithm=self.explaining_algorithm,
explainer_config=dict(
explanation_type=self.explaining_cfg.explanation_type,
node_mask_type="object",
edge_mask_type="object",
),
model_config=dict(
mode="regression",
task_level=self.cfg.dataset.task,
return_type=self.explaining_cfg.model_config.return_type,
),
)
self.explainer = explainer
def load_fidelity(self):
if self.cfg is None:
self.load_cfg()
if self.explaining_cfg is None:
self.load_explaining_cfg()
name = self.explaining_cfg.metrics.fidelity.name
if name == 'all':
all_metrics = [
Fidelity(name=name, model=self.model) for name in all_fidelity
]
elif isinstance(name,str):
if name in all_fidelity:
all_metrics = [Fidelity(name=name, model=self.model)]
else:
raise ValueError(f'This fidelity metric {name} is nor supported yet. Supported are {all_fidelity}')
elif isinstance(name,list):
all_metrics = [Fidelity(name=name, model=self.model) for name_ in name if name_ in all_fidelity]
elif name is None:
all_metrics = []
self.fidelities = all_metrics
def load_sparsity(self):
if self.cfg is None:
self.load_cfg()
if self.explaining_cfg is None:
self.load_explaining_cfg()
name = self.explaining_cfg.metrics.sparsity.name
if name == 'all':
all_metrics = [
Sparsity(name=name) for name in all_sparsity
]
elif isinstance(name,str):
if name in all_sparsity:
all_metrics = [Sparsity(name=name)]
else:
raise ValueError(f'This sparsity metric {name} is nor supported yet. Supported are {all_sparsity}')
elif isinstance(name,list):
all_metrics = [Sparsity(name=name) for name_ in name if name_ in all_sparsity]
elif name is None:
all_metrics = []
self.sparsities = all_metrics
def load_accuracy(self):
if self.cfg is None:
self.load_cfg()
if self.explaining_cfg is None:
self.load_explaining_cfg()
if self.explaining_cfg.dataset.name == "BASHAPES":
name = self.explaining_cfg.metrics.accuracy.name
if name == 'all':
all_metrics = [
Accuracy(name=name) for name in all_accuracy
]
elif isinstance(name,str):
if name in all_accuracy:
all_metrics = [Accuracy(name=name)]
else:
raise ValueError(f'This accuracy metric {name} is nor supported yet. Supported are {all_accuracy}')
elif isinstance(name,list):
all_metrics = [Accuracy(name=name) for name_ in name if name_ in all_accuracy]
elif name is None:
all_metrics = []
self.accuraties = all_metrics
else:
raise ValueError(f'Provided dataset needs explanation groundtruths for using Accuracies metric, e.g BASHAPES dataset')
def load_metric(self):
if self.cfg is None:
self.load_cfg()
if self.explaining_cfg is None:
self.load_explaining_cfg()
if self.accuraties is None:
self.load_accuracy()
if self.sparsities is None:
self.load_sparsity()
if self.fidelities is None:
self.load_fidelity()
self.metrics = self.fidelities+self.accuraties+self.sparsities
name_ = self.explaining_cfg.metrics.name
if name_ == "all":
all_fid_metrics = [
Fidelity(name=name, model=self.model) for name in all_fidelity
]
all_spa_metrics = [Sparsity(name) for name in all_sparsity]
self.metrics = all_spa_metrics + all_fid_metrics
if self.explaining_cfg.dataset.name == "BASHAPES":
all_acc_metrics = [Accuracy(name) for name in all_accuracy]
self.metrics = self.metrics + all_acc_metrics
elif name_ in all_fidelity:
self.metrics = [Fidelity(name=name_, model=self.model)]
elif name_ in all_sparsity:
self.metrics = [Sparsity(name_)]
elif name_ in all_accuracy:
if self.explaining_cfg.dataset.name == "BASHAPES":
self.metrics = [Accuracy(name_)]
else:
raise ValueError(
f"The metric {name} is not supported for dataset {self.explaining_cfg.dataset.name} yet, it requires groundtruth explanation"
)
elif name_ is None:
self.metrics = []
else:
raise ValueError(f"{name_} Metric is not supported yet")
def load_attack(self):
if self.cfg is None:
self.load_cfg()
if self.explaining_cfg is None:
self.load_explaining_cfg()
name_ = self.explaining_cfg.attack.name
if name_ == "all":
all_rob_metrics = [
Attack(name=name, model=self.model) for name in all_robust
name = self.explaining_cfg.attack.name
if name == 'all':
all_metrics = [
Attack(name=name,model=self.model) for name in all_robust
]
self.attacks = all_rob_metrics
elif name_ in all_robust:
self.attacks = [Attack(name=name_, model=self.model)]
elif name_ is None:
self.attacks = []
elif isinstance(name,str):
if name in all_robust:
all_metrics = [Attack(name=name,model=self.model)]
else:
raise ValueError(f'This Attack metric {name} is not supported yet. Supported are {all_robust}')
elif isinstance(name,list):
all_metrics = [Attack(name=name,model=self.model) for name_ in name if name_ in all_robust]
elif name is None:
all_metrics = []
self.attacks = all_metrics
def load_adjust(self):
if self.explaining_cfg is None:
self.load_explaining_cfg()
strategy = self.explaining_cfg.adjust.strategy
if strategy == "all":
self.adjusts = [Adjust(strategy=strat) for strat in all_adjusts_filters]
elif isinstance(name,str):
if name in all_adjusts_filters:
all_metrics = [Adjust(strategy=name)]
else:
raise ValueError(f'This Adjust metric {name} is not supported yet. Supported are {all_adjusts_filters}')
elif isinstance(name,list):
all_metrics = [Adjust(strategy=name_) for name_ in name if name_ in all_robust]
elif name is None:
all_metrics = []
self.adjusts = all_metrics
def load_threshold(self):
if self.explaining_cfg is None:
self.load_explaining_cfg()
threshold_type =self.explaining_cfg.threshold_config.type
if threshold_type == 'all':
th_hard = [{"threshold_type": 'hard',"value": th_value} for th_value in self.explaining_cfg.threshold.value.hard]
th_topk = [{"threshold_type": th_type,"value": th_value} for th_value in self.explaining_cfg.threshold.value.topk f or th_type in all_threshold_type if 'topk' in th_type]
all_threshold = th_hard + th_topk
elif isinstance(threshold_type,str):
if threshold_type in all_threshold_type:
if 'topk' in threshold_type:
all_threshold = [{
"threshold_type": threshold_type,
"value": threshold_value,
} for threshold_value in self.explaining_cfg.threshold.value.topk]
elif threshold_type == 'hard':
all_threshold = [{
"threshold_type": threshold_type,
"value": threshold_value,
} for threshold_value in self.explaining_cfg.threshold.value.hard]
elif isinstance(threshold_type,list):
all_threshold = []
for tf_type in threshold_type:
if 'topk' in th_type:
all_threshold.expend([{
"threshold_type": threshold_type,
"value": threshold_value,
} for threshold_value in self.explaining_cfg.threshold.value.topk])
elif th_type == 'hard':
all_threshold.expend([{
"threshold_type": threshold_type,
"value": threshold_value,
} for threshold_value in self.explaining_cfg.threshold.value.hard])
elif threshold_type is None:
all_threshold = []
self.thresholds_configs = all_threshold
def set_explainer_threshold_config(self,threshold_config):
self.explainer.threshold_config = ThresholdConfig.cast(threshold_config)
def load_graphstat(self):
self.graphstat = GraphStat()
def get_explanation_(self,item:Data,path:str):
if is_exists(path):
if self.explaining_cfg.explainer.force:
explanation = get_explanation(self.explainer, item)
else:
explanation = load_explanation(path)
else:
raise ValueError(f"{name_} is an Attack method that is not supported yet")
explanation = get_explanation(explainer, item)
save_explanation(explanation,path)
return explanation
class Explaining(object):
def __init__(self,outline:ExplainingOutline):
self.outline = outline
def run(self):
pass
def explain(self):
item, index = self.get_item()
not_none = item is None or index is None
whœ
while

View File

@ -9,37 +9,29 @@ from torch_geometric.explain.explanation import Explanation
class Adjust(object):
def __init__(
self,
apply_relu: bool = True,
apply_normalize: bool = True,
apply_project: bool = True,
apply_absolute: bool = False,
strategy: str = "rpn",
):
self.apply_relu = apply_relu
self.apply_normalize = apply_normalize
self.apply_project = apply_project
self.apply_absolute = apply_absolute
if self.apply_absolute and self.apply_relu:
self.apply_relu = False
self.strategy = strategy
def forward(self, exp: Explanation) -> Explanation:
exp_ = copy.copy(exp)
_store = exp_.to_dict()
for k, v in _store.items():
if "mask" in k:
if self.apply_relu:
_store[k] = self.relu(v)
elif self.apply_absolute:
_store[k] = self.absolute(v)
elif self.apply_project:
if "edge" in k:
pass
else:
_store[k] = self.project(v)
elif self.apply_normalize:
_store[k] = self.normalize(v)
else:
continue
for f_ in self.strategy:
if f_ == "r":
_store[k] = self.relu(v)
if f_ == "a":
_store[k] = self.absolute(v)
if f_ == "p":
if "edge" in k:
pass
else:
_store[k] = self.project(v)
if f_ == "n":
_store[k] = self.normalize(v)
else:
continue
return exp_

View File

@ -7,6 +7,38 @@ from torch_geometric.data import Data
from torch_geometric.explain.explanation import Explanation
def get_explanation(explainer, item):
explanation = explainer(
x=item.x,
edge_index=item.edge_index,
index=int(item.y),
target=item.y,
)
# TODO return None if pas bien plutot
assert explanation_verification(explanation)
return explanation
def is_empty_graph(data: Data) -> bool:
return data.x.shape[0] == 0
def get_pred(explainer, explanation):
pred = explainer.get_prediction(x=explanation.x, edge_index=explanation.edge_index)[
0
]
setattr(explanation, "pred", pred)
data = explanation.to_dict()
if not data.get("node_mask") is None or not data.get("edge_mask") is None:
pred_masked = explainer.get_masked_prediction(
x=explanation.x,
edge_index=explanation.edge_index,
node_mask=data.get("node_mask"),
edge_mask=data.get("edge_mask"),
)[0]
setattr(explanation, "pred_exp", pred_masked)
def explanation_verification(exp: Explanation) -> bool:
is_good = True
masks = [v for k, v in exp.items() if "_mask" in k and isinstance(v, torch.Tensor)]
@ -53,5 +85,4 @@ def normalize_explanation_masks(exp: Explanation, p: str = "inf") -> Explanation
norm = torch.norm(input=data[k], p=p, dim=None).item()
if norm.item() > 0:
data[k] = data[k] / norm
return exp

19
main.py
View File

@ -19,7 +19,8 @@ from explaining_framework.utils.explaining.cmd_args import parse_args
from explaining_framework.utils.explaining.outline import ExplainingOutline
from explaining_framework.utils.explanation.adjust import Adjust
from explaining_framework.utils.explanation.io import (
explanation_verification, load_explanation, save_explanation)
explanation_verification, get_explanation, get_pred, load_explanation,
save_explanation)
from explaining_framework.utils.io import (is_exists, obj_config_to_str,
read_json, write_json, write_yaml)
@ -42,17 +43,6 @@ def get_pred(explainer, explanation):
setattr(explanation, "pred_exp", pred_masked)
def get_explanation(explainer, item):
explanation = explainer(
x=item.x,
edge_index=item.edge_index,
index=int(item.y),
target=item.y,
)
assert explanation_verification(explanation)
return explanation
if __name__ == "__main__":
args = parse_args()
outline = ExplainingOutline(args.explaining_cfg_file)
@ -68,6 +58,7 @@ if __name__ == "__main__":
attacks = outline.attacks
explainer_cfg = outline.explainer_cfg
model_signature = outline.model_signature
# RAJOUTER INDEXES
# Set seed
seed_everything(explaining_cfg.seed)
@ -77,6 +68,7 @@ if __name__ == "__main__":
makedirs(global_path)
write_yaml(cfg, os.path.join(global_path, "config.yaml"))
write_json(model_info, os.path.join(global_path, "info.json"))
# SET RUN DIR
global_path = os.path.join(
global_path,
@ -85,9 +77,11 @@ if __name__ == "__main__":
makedirs(global_path)
write_yaml(explaining_cfg, os.path.join(global_path, explaining_cfg.cfg_dest))
write_yaml(explainer_cfg, os.path.join(global_path, "explainer_cfg.yaml"))
# SET EXPLAIN_DIR
global_path = os.path.join(global_path, obj_config_to_str(explaining_algorithm))
makedirs(global_path)
# SET UP EXPLAINER
explainer = Explainer(
model=model,
algorithm=explaining_algorithm,
@ -102,6 +96,7 @@ if __name__ == "__main__":
return_type=explaining_cfg.model_config.return_type,
),
)
# CHERGER SUR LE GPU DIRECT
if not explaining_cfg.dataset.specific_items is None:
indexes = explaining_cfg.dataset.specific_items
else: