126 lines
3.7 KiB
Python
126 lines
3.7 KiB
Python
#!/usr/bin/env python
|
|
# -*- coding: utf-8 -*-
|
|
|
|
import logging
|
|
import multiprocessing as mp
|
|
import os
|
|
import threading
|
|
import time
|
|
import types
|
|
from inspect import getmembers, isfunction, signature
|
|
|
|
import networkx as nx
|
|
from torch_geometric.data import Data
|
|
from torch_geometric.utils import to_networkx
|
|
|
|
with open("mapping_nx.txt", "r") as file:
|
|
BLACK_LIST = [line.rstrip() for line in file]
|
|
|
|
|
|
class GraphStat(object):
|
|
def __init__(self):
|
|
self.maps = {
|
|
"networkx": self.available_map_networkx(),
|
|
"torch_geometric": self.available_map_torch_geometric(),
|
|
}
|
|
|
|
def available_map_networkx(self):
|
|
functions_list = getmembers(nx.algorithms, isfunction)
|
|
MANUALLY_ADDED = [
|
|
"algebraic_connectivity",
|
|
"adjacency_spectrum",
|
|
"degree",
|
|
"density",
|
|
"laplacian_spectrum",
|
|
"normalized_laplacian_spectrum",
|
|
"number_of_selfloops",
|
|
"number_of_edges",
|
|
"number_of_nodes",
|
|
]
|
|
MANUALLY_ADDED_LIST = [
|
|
item for item in getmembers(nx, isfunction) if item[0] in MANUALLY_ADDED
|
|
]
|
|
functions_list = functions_list + MANUALLY_ADDED_LIST
|
|
maps = {}
|
|
for func in functions_list:
|
|
name, f = func
|
|
if (
|
|
name in BLACK_LIST
|
|
or name == "recursive_simple_cycles"
|
|
or "triad" in name
|
|
or "weisfeiler" in name
|
|
or "dfs" in name
|
|
or "trophic" in name
|
|
or "recursive" in name
|
|
or "scipy" in name
|
|
or "numpy" in name
|
|
or "sigma" in name
|
|
or "omega" in name
|
|
or "all_" in name
|
|
):
|
|
continue
|
|
else:
|
|
maps[name] = f
|
|
return maps
|
|
|
|
def available_map_torch_geometric(self):
|
|
names = [
|
|
"num_nodes",
|
|
"num_edges",
|
|
"has_self_loops",
|
|
"has_isolated_nodes",
|
|
"num_nodes_features",
|
|
"y",
|
|
]
|
|
maps = {
|
|
name: lambda x, name=name: x.__getattr__(name) if hasattr(x, name) else None
|
|
for name in names
|
|
}
|
|
return maps
|
|
|
|
def __call__(self, data):
|
|
data_ = data.__copy__()
|
|
stats = {}
|
|
for k, v in self.maps.items():
|
|
if k == "networkx":
|
|
_data_ = to_networkx(data)
|
|
_data_ = _data_.to_undirected()
|
|
elif k == "torch_geometric":
|
|
_data_ = data.__copy__()
|
|
for name, f in v.items():
|
|
if f is None:
|
|
stats[name] = None
|
|
continue
|
|
else:
|
|
try:
|
|
t0 = time.time()
|
|
val = f(_data_)
|
|
t1 = time.time()
|
|
delta = t1 - t0
|
|
except Exception as e:
|
|
print(name, e)
|
|
with open(f"{name}.txt", "w") as f:
|
|
f.write(str(e))
|
|
# print(name, round(delta, 4))
|
|
# if callable(val) and k == "torch_geometric":
|
|
# val = val()
|
|
# if isinstance(val, types.GeneratorType):
|
|
# val = list(val)
|
|
# stats[name] = val
|
|
return stats
|
|
|
|
|
|
from torch_geometric.datasets import KarateClub, Planetoid
|
|
|
|
d = Planetoid(root="/tmp/", name="Cora")
|
|
# d = KarateClub()
|
|
a = d[0]
|
|
st = GraphStat()
|
|
stat = st(a)
|
|
for k, v in stat.items():
|
|
print("---------")
|
|
print("Name:", k)
|
|
print("Type:", type(v))
|
|
print("Val:", v)
|
|
print("---------")
|