explaining_framework/explaining_framework/config/explaining_config.py
2023-01-08 20:12:38 +01:00

252 lines
8.1 KiB
Python

import functools
import inspect
import logging
import os
import shutil
import warnings
from collections.abc import Iterable
from dataclasses import asdict
from typing import Any
import torch_geometric.graphgym.register as register
from torch_geometric.data.makedirs import makedirs
try: # Define global config object
from yacs.config import CfgNode as CN
explaining_cfg = CN()
except ImportError:
explaining_cfg = None
warnings.warn(
"Could not define global config object. Please install "
"'yacs' for using the GraphGym experiment manager via "
"'pip install yacs'."
)
def set_cfg(explaining_cfg):
r"""
This function sets the default config value.
1) Note that for an experiment, only part of the arguments will be used
The remaining unused arguments won't affect anything.
So feel free to register any argument in graphgym.contrib.config
2) We support *at most* two levels of configs, e.g., explaining_cfg.dataset.name
:return: configuration use by the experiment.
"""
if explaining_cfg is None:
return explaining_cfg
# ----------------------------------------------------------------------- #
# Basic options
# ----------------------------------------------------------------------- #
# Set print destination: stdout / file / both
explaining_cfg.print = "both"
explaining_cfg.out_dir = "./explanations"
explaining_cfg.cfg_dest = "explaining_config.yaml"
explaining_cfg.seed = 0
# ----------------------------------------------------------------------- #
# Dataset options
# ----------------------------------------------------------------------- #
explaining_cfg.dataset = CN()
explaining_cfg.dataset.name = "Cora"
explaining_cfg.dataset.item = None
# ----------------------------------------------------------------------- #
# Model options
# ----------------------------------------------------------------------- #
explaining_cfg.model = CN()
# Set wether or not load the best model for given dataset or a path
explaining_cfg.model.ckpt = "best"
# Setting the path of models folder
explaining_cfg.model.path = "path"
# ----------------------------------------------------------------------- #
# Explainer options
# ----------------------------------------------------------------------- #
explaining_cfg.explainer = CN()
# Name of the explaining method
explaining_cfg.explainer.name = "EiXGNN"
# Whether or not to provide specific explaining methods configuration or default configuration
explaining_cfg.explainer.cfg = "default"
# Whether or not recomputing explanation if they already exist
explaining_cfg.explainer.force = False
# ----------------------------------------------------------------------- #
# Explaining options
# ----------------------------------------------------------------------- #
# 'ExplanationType : 'model' or 'phenomenon'
explaining_cfg.explanation_type = "model"
explaining_cfg.model_config = CN()
# Do not modify it, will be handled by dataset , assuming one dataset = one learning task
explaining_cfg.model_config.mode = "regression"
# Do not modify it, will be handled by dataset , assuming one dataset = one learning task
explaining_cfg.model_config.task_level = None
# Do not modify it, we always assume here that model output are 'raw'
explaining_cfg.model_config.return_type = "raw"
# ----------------------------------------------------------------------- #
# Thresholding options
# ----------------------------------------------------------------------- #
explaining_cfg.threshold = CN()
explaining_cfg.threshold.config = CN()
explaining_cfg.threshold.config.type = "all"
explaining_cfg.threshold.value = CN()
explaining_cfg.threshold.value.hard = [(i * 10) / 100 for i in range(1, 10)]
explaining_cfg.threshold.value.topk = [2, 3, 5, 10, 20, 30, 50]
# which objectives metrics to computes, either all or one in particular if implemented
explaining_cfg.metrics = CN()
explaining_cfg.metrics.sparsity = CN()
explaining_cfg.metrics.sparsity.name = "all"
explaining_cfg.metrics.fidelity = CN()
explaining_cfg.metrics.fidelity.name = "all"
explaining_cfg.metrics.accuracy = CN()
explaining_cfg.metrics.accuracy.name = "all"
# Whether or not recomputing metrics if they already exist
explaining_cfg.adjust = CN()
explaining_cfg.adjust.strategy = "rpns"
explaining_cfg.attack = CN()
explaining_cfg.attack.name = "all"
# Select device: 'cpu', 'cuda', 'auto'
explaining_cfg.accelerator = "auto"
def assert_cfg(explaining_cfg):
r"""Checks config values, do necessary post processing to the configs"""
explaining_cfg.run_dir = explaining_cfg.out_dir
def dump_cfg(explaining_cfg):
r"""
Dumps the config to the output directory specified in
:obj:`explaining_cfg.out_dir`
Args:
explaining_cfg (CfgNode): Configuration node
"""
makedirs(explaining_cfg.out_dir)
explaining_cfg_file = os.path.join(
explaining_cfg.out_dir, explaining_cfg.explaining_cfg_dest
)
with open(explaining_cfg_file, "w") as f:
explaining_cfg.dump(stream=f)
def load_cfg(explaining_cfg, args):
r"""
Load configurations from file system and command line
Args:
explaining_cfg (CfgNode): Configuration node
args (ArgumentParser): Command argument parser
"""
explaining_cfg.merge_from_file(args.explaining_cfg_file)
explaining_cfg.merge_from_list(args.opts)
assert_explaining_cfg(explaining_cfg)
def makedirs_rm_exist(dir):
if os.path.isdir(dir):
shutil.rmtree(dir)
os.makedirs(dir, exist_ok=True)
def get_fname(fname):
r"""
Extract filename from file name path
Args:
fname (string): Filename for the yaml format configuration file
"""
fname = fname.split("/")[-1]
if fname.endswith(".yaml"):
fname = fname[:-5]
elif fname.endswith(".yml"):
fname = fname[:-4]
return fname
def set_out_dir(out_dir, fname):
r"""
Create the directory for full experiment run
Args:
out_dir (string): Directory for output, specified in :obj:`explaining_cfg.out_dir`
fname (string): Filename for the yaml format configuration file
"""
fname = get_fname(fname)
explaining_cfg.out_dir = os.path.join(out_dir, fname)
# Make output directory
if explaining_cfg.train.auto_resume:
os.makedirs(explaining_cfg.out_dir, exist_ok=True)
def set_run_dir(out_dir):
r"""
Create the directory for each random seed experiment run
Args:
out_dir (string): Directory for output, specified in :obj:`explaining_cfg.out_dir`
fname (string): Filename for the yaml format configuration file
"""
explaining_cfg.run_dir = os.path.join(out_dir, str(explaining_cfg.seed))
# Make output directory
if explaining_cfg.train.auto_resume:
os.makedirs(explaining_cfg.run_dir, exist_ok=True)
set_cfg(explaining_cfg)
def from_config(func):
if inspect.isclass(func):
params = list(inspect.signature(func.__init__).parameters.values())[1:]
else:
params = list(inspect.signature(func).parameters.values())
arg_names = [p.name for p in params]
has_defaults = [p.default != inspect.Parameter.empty for p in params]
@functools.wraps(func)
def wrapper(*args, explaining_cfg: Any = None, **kwargs):
if explaining_cfg is not None:
explaining_cfg = (
dict(explaining_cfg)
if isinstance(explaining_cfg, Iterable)
else asdict(explaining_cfg)
)
iterator = zip(arg_names[len(args) :], has_defaults[len(args) :])
for arg_name, has_default in iterator:
if arg_name in kwargs:
continue
elif arg_name in explaining_cfg:
kwargs[arg_name] = explaining_cfg[arg_name]
elif not has_default:
raise ValueError(f"'explaining_cfg.{arg_name}' undefined")
return func(*args, **kwargs)
return wrapper