247 lines
6.9 KiB
Markdown
247 lines
6.9 KiB
Markdown
|
|
<!-- README.md is generated from README.Rmd. Please edit that file -->
|
|
|
|
# visualizeR <img src="man/figures/logo.png" align="right" width="120"/>
|
|
|
|
> What a color! What a viz!
|
|
|
|
`visualizeR` proposes some utils to sane colors, ready-to-go color
|
|
palettes, and a few visualization functions.
|
|
|
|
## Installation
|
|
|
|
You can install the last version of visualizeR from
|
|
[GitHub](https://github.com/) with:
|
|
|
|
``` r
|
|
# install.packages("devtools")
|
|
devtools::install_github("gnoblet/visualizeR", build_vignettes = TRUE)
|
|
```
|
|
|
|
## Roadmap
|
|
|
|
Roadmap is as follows: - \[ \] Full revamp \## Request
|
|
|
|
Please, do not hesitate to pull request any new viz or colors or color
|
|
palettes, or to email request any change (<gnoblet@zaclys.net>).
|
|
|
|
## Colors
|
|
|
|
Functions to access colors and palettes are `color()` or `palette()`.
|
|
Feel free to pull request new colors.
|
|
|
|
``` r
|
|
library(visualizeR)
|
|
|
|
# Get all saved colors, named
|
|
color(unname = F)[1:10]
|
|
#> white lighter_grey light_grey dark_grey black
|
|
#> "#FFFFFF" "#F5F5F5" "#E3E3E3" "#464647" "#000000"
|
|
#> cat_2_yellow_1 cat_2_yellow_2 cat_2_light_1 cat_2_light_2 cat_2_green_1
|
|
#> "#ffc20a" "#0c7bdc" "#fefe62" "#d35fb7" "#1aff1a"
|
|
|
|
# Extract a color palette as hexadecimal codes and reversed
|
|
palette(palette = "cat_5_main", reversed = TRUE, color_ramp_palette = FALSE)
|
|
#> [1] "#083d77" "#4ecdc4" "#f4c095" "#b47eb3" "#ffd5ff"
|
|
|
|
# Get all color palettes names
|
|
palette(show_palettes = TRUE)
|
|
#> [1] "cat_2_yellow" "cat_2_light"
|
|
#> [3] "cat_2_green" "cat_2_blue"
|
|
#> [5] "cat_5_main" "cat_5_ibm"
|
|
#> [7] "cat_3_aquamarine" "cat_3_tol_high_contrast"
|
|
#> [9] "cat_8_tol_adapted" "cat_3_custom_1"
|
|
#> [11] "cat_4_custom_1" "cat_5_custom_1"
|
|
#> [13] "cat_6_custom_1" "div_5_orange_blue"
|
|
#> [15] "div_5_green_purple"
|
|
```
|
|
|
|
## Charts
|
|
|
|
### Example 1: Bar chart
|
|
|
|
``` r
|
|
library(palmerpenguins)
|
|
library(dplyr)
|
|
|
|
df <- penguins |>
|
|
group_by(island, species) |>
|
|
summarize(
|
|
mean_bl = mean(bill_length_mm, na.rm = T),
|
|
mean_fl = mean(flipper_length_mm, na.rm = T)
|
|
) |>
|
|
ungroup()
|
|
|
|
df_island <- penguins |>
|
|
group_by(island) |>
|
|
summarize(
|
|
mean_bl = mean(bill_length_mm, na.rm = T),
|
|
mean_fl = mean(flipper_length_mm, na.rm = T)
|
|
) |>
|
|
ungroup()
|
|
|
|
# Simple bar chart by group with some alpha transparency
|
|
bar(df, "island", "mean_bl", "species", x_title = "Mean of bill length", title = "Mean of bill length by island and species")
|
|
```
|
|
|
|
<img src="man/figures/README-example-bar-chart-1.png" width="65%" />
|
|
|
|
``` r
|
|
|
|
# Flipped / Horizontal
|
|
hbar(df, "island", "mean_bl", "species", x_title = "Mean of bill length", title = "Mean of bill length by island and species")
|
|
```
|
|
|
|
<img src="man/figures/README-example-bar-chart-2.png" width="65%" />
|
|
|
|
``` r
|
|
|
|
# Facetted
|
|
bar(df, "island", "mean_bl", "species", facet = "species", x_title = "Mean of bill length", title = "Mean of bill length by island and species", add_color_guide = FALSE)
|
|
```
|
|
|
|
<img src="man/figures/README-example-bar-chart-3.png" width="65%" />
|
|
|
|
``` r
|
|
|
|
# Flipped, with text, smaller width
|
|
hbar(df = df_island, x = "island", y = "mean_bl", group = "island", title = "Mean of bill length by island", add_text = T, width = 0.6, add_text_suffix = "mm", add_text_expand_limit = 1.3, add_color_guide = FALSE)
|
|
```
|
|
|
|
<img src="man/figures/README-example-bar-chart-4.png" width="65%" />
|
|
|
|
### Example 2: Scatterplot
|
|
|
|
``` r
|
|
# Simple scatterplot
|
|
point(penguins, "bill_length_mm", "flipper_length_mm")
|
|
```
|
|
|
|
<img src="man/figures/README-example-point-chart-1.png" width="65%" />
|
|
|
|
``` r
|
|
|
|
# Scatterplot with grouping colors, greater dot size, some transparency
|
|
point(penguins, "bill_length_mm", "flipper_length_mm", "island", group_title = "Island", alpha = 0.6, size = 3, title = "Bill vs. flipper length", , add_color_guide = FALSE)
|
|
```
|
|
|
|
<img src="man/figures/README-example-point-chart-2.png" width="65%" />
|
|
|
|
``` r
|
|
|
|
# Facetted scatterplot by island
|
|
point(penguins, "bill_length_mm", "flipper_length_mm", "species", "island", "fixed", group_title = "Species", title = "Bill vs. flipper length by species and island", add_color_guide = FALSE)
|
|
```
|
|
|
|
<img src="man/figures/README-example-point-chart-3.png" width="65%" />
|
|
|
|
### Example 3: Dumbbell plot
|
|
|
|
Remember to ensure that your data are in the long format and you only
|
|
have two groups on the x-axis; for instance, IDP and returnee and no NA
|
|
values.
|
|
|
|
``` r
|
|
# Prepare long data
|
|
df <- tibble::tibble(
|
|
admin1 = rep(letters[1:8], 2),
|
|
setting = c(rep(c("Rural", "Urban"), 4), rep(c("Urban", "Rural"), 4)),
|
|
stat = rnorm(16, mean = 50, sd = 18)
|
|
) |>
|
|
dplyr::mutate(stat = round(stat, 0))
|
|
|
|
|
|
|
|
|
|
# dumbbell(
|
|
# df,
|
|
# "stat",
|
|
# "setting",
|
|
# "admin1",
|
|
# title = "% of HHs that reported open defecation as sanitation facility",
|
|
# group_y_title = "Admin 1",
|
|
# group_x_title = "Setting"
|
|
# )
|
|
```
|
|
|
|
### Example 4: donut chart
|
|
|
|
``` r
|
|
# Some summarized data: % of HHs by displacement status
|
|
df <- tibble::tibble(
|
|
status = c("Displaced", "Non displaced", "Returnee", "Don't know/Prefer not to say"),
|
|
percentage = c(18, 65, 12, 3)
|
|
)
|
|
|
|
# Donut
|
|
# donut(df,
|
|
# status,
|
|
# percentage,
|
|
# hole_size = 3,
|
|
# add_text_suffix = "%",
|
|
# add_text_color = color("dark_grey"),
|
|
# add_text_treshold_display = 5,
|
|
# x_title = "Displacement status",
|
|
# title = "% of HHs by displacement status"
|
|
# )
|
|
```
|
|
|
|
### Example 5: Waffle chart
|
|
|
|
``` r
|
|
#
|
|
# waffle(df, status, percentage, x_title = "A caption", title = "A title", subtitle = "A subtitle")
|
|
```
|
|
|
|
### Example 6: Alluvial chart
|
|
|
|
``` r
|
|
# Some summarized data: % of HHs by self-reported status of displacement in 2021 and in 2022
|
|
df <- tibble::tibble(
|
|
status_from = c(
|
|
rep("Displaced", 4),
|
|
rep("Non displaced", 4),
|
|
rep("Returnee", 4),
|
|
rep("Dnk/Pnts", 4)
|
|
),
|
|
status_to = c("Displaced", "Non displaced", "Returnee", "Dnk/Pnts", "Displaced", "Non displaced", "Returnee", "Dnk/Pnts", "Displaced", "Non displaced", "Returnee", "Dnk/Pnts", "Displaced", "Non displaced", "Returnee", "Dnk/Pnts"),
|
|
percentage = c(20, 8, 18, 1, 12, 21, 0, 2, 0, 3, 12, 1, 0, 0, 1, 1)
|
|
)
|
|
|
|
# Alluvial, here the group is the status for 2021
|
|
|
|
# alluvial(df,
|
|
# status_from,
|
|
# status_to,
|
|
# percentage,
|
|
# status_from,
|
|
# from_levels = c("Displaced", "Non displaced", "Returnee", "Dnk/Pnts"),
|
|
# alpha = 0.8,
|
|
# group_title = "Status for 2021",
|
|
# title = "% of HHs by self-reported status from 2021 to 2022"
|
|
# )
|
|
```
|
|
|
|
### Example 7: Lollipop chart
|
|
|
|
``` r
|
|
library(tidyr)
|
|
# Prepare long data
|
|
df <- tibble::tibble(
|
|
admin1 = replicate(15, sample(letters, 8)) |> t() |> as.data.frame() |> unite("admin1", sep = "") |> dplyr::pull(admin1),
|
|
stat = rnorm(15, mean = 50, sd = 15)
|
|
) |>
|
|
dplyr::mutate(stat = round(stat, 0))
|
|
|
|
# Make lollipop plot, vertical with 45 degrees angle X-labels
|
|
# lollipop(df,
|
|
# admin1,
|
|
# stat,
|
|
# arrange = FALSE,
|
|
# add_text = FALSE,
|
|
# flip = FALSE,
|
|
# y_title = "% of HHs",
|
|
# x_title = "Admin 1",
|
|
# title = "% of HHs that reported having received a humanitarian assistance"
|
|
# )
|
|
```
|