visualizeR/README.md

341 lines
9.3 KiB
Markdown
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!-- README.md is generated from README.Rmd. Please edit that file -->
# visualizeR <img src="man/figures/logo.png" align="right" width="120"/>
> What a color! What a viz!
`visualizeR` proposes some utils to sane colors, ready-to-go color
palettes, and a few visualization functions.
## Installation
You can install the last version of visualizeR from
[GitHub](https://github.com/) with:
``` r
# install.packages("devtools")
devtools::install_github('gnoblet/visualizeR', build_vignettes = TRUE)
```
## Roadmap
Roadmap is as follows:
- [ ] Full revamp of core functions (colors, pattern, incl. adding test
and pre-commit structures)
- [ ] Add other types of plots:
- [ ] Dumbell
- [ ] Waffle
- [ ] Donut
- [ ] Alluvial
## Request
Please, do not hesitate to pull request any new viz or colors or color
palettes, or to email request any change (<gnoblet@zaclys.net>).
## Colors
Functions to access colors and palettes are `color()` or `palette()`.
Feel free to pull request new colors.
``` r
library(visualizeR)
# Get all saved colors, named
color(unname = F)[1:10]
#> white lighter_grey light_grey dark_grey light_blue_grey
#> "#FFFFFF" "#F5F5F5" "#E3E3E3" "#464647" "#B3C6D1"
#> grey black cat_2_yellow_1 cat_2_yellow_2 cat_2_light_1
#> "#71716F" "#000000" "#ffc20a" "#0c7bdc" "#fefe62"
# Extract a color palette as hexadecimal codes and reversed
palette(palette = 'cat_5_main', reversed = TRUE, color_ramp_palette = FALSE)
#> [1] "#083d77" "#4ecdc4" "#f4c095" "#b47eb3" "#ffd5ff"
# Get all color palettes names
palette(show_palettes = TRUE)
#> [1] "cat_2_yellow" "cat_2_light"
#> [3] "cat_2_green" "cat_2_blue"
#> [5] "cat_5_main" "cat_5_ibm"
#> [7] "cat_3_aquamarine" "cat_3_tol_high_contrast"
#> [9] "cat_8_tol_adapted" "cat_3_custom_1"
#> [11] "cat_4_custom_1" "cat_5_custom_1"
#> [13] "cat_6_custom_1" "div_5_orange_blue"
#> [15] "div_5_green_purple"
```
## Charts
### Example 1: Bar chart
``` r
library(palmerpenguins)
library(dplyr)
df <- penguins |>
group_by(island, species) |>
summarize(
mean_bl = mean(bill_length_mm, na.rm = T),
mean_fl = mean(flipper_length_mm, na.rm = T)
) |>
ungroup()
df_island <- penguins |>
group_by(island) |>
summarize(
mean_bl = mean(bill_length_mm, na.rm = T),
mean_fl = mean(flipper_length_mm, na.rm = T)
) |>
ungroup()
# Simple bar chart by group with some alpha transparency
bar(df, 'island', 'mean_bl', 'species', x_title = 'Mean of bill length', title = 'Mean of bill length by island and species')
```
<img src="man/figures/README-example-bar-chart-1.png" width="65%" />
``` r
# Flipped / Horizontal
hbar(df, 'island', 'mean_bl', 'species', x_title = 'Mean of bill length', title = 'Mean of bill length by island and species')
```
<img src="man/figures/README-example-bar-chart-2.png" width="65%" />
``` r
# Facetted
bar(df, 'island', 'mean_bl', facet = 'species', x_title = 'Mean of bill length', title = 'Mean of bill length by island and species', add_color_guide = FALSE)
```
<img src="man/figures/README-example-bar-chart-3.png" width="65%" />
``` r
# Flipped, with text, smaller width, and caption
hbar(df = df_island, x = 'island', y = 'mean_bl', title = 'Mean of bill length by island', add_text = T, width = 0.6, add_text_suffix = 'mm', add_text_expand_limit = 1.3, add_color_guide = FALSE, caption = "Data: palmerpenguins package.")
```
<img src="man/figures/README-example-bar-chart-4.png" width="65%" />
### Example 2: Scatterplot
``` r
# Simple scatterplot
point(penguins, 'bill_length_mm', 'flipper_length_mm')
```
<img src="man/figures/README-example-point-chart-1.png" width="65%" />
``` r
# Scatterplot with grouping colors, greater dot size, some transparency
point(penguins, 'bill_length_mm', 'flipper_length_mm', 'island', group_title = 'Island', alpha = 0.6, size = 3, title = 'Bill vs. flipper length', , add_color_guide = FALSE)
```
<img src="man/figures/README-example-point-chart-2.png" width="65%" />
``` r
# Facetted scatterplot by island
point(penguins, 'bill_length_mm', 'flipper_length_mm', 'species', 'island', 'fixed', group_title = 'Species', title = 'Bill vs. flipper length by species and island', add_color_guide = FALSE)
```
<img src="man/figures/README-example-point-chart-3.png" width="65%" />
### Example 3: Dumbbell plot
Remember to ensure that your data are in the long format and you only
have two groups on the x-axis; for instance, IDP and returnee and no NA
values.
``` r
# Prepare long data
df <- tibble::tibble(
admin1 = rep(letters[1:8], 2),
setting = c(rep(c('Rural', 'Urban'), 4), rep(c('Urban', 'Rural'), 4)),
stat = rnorm(16, mean = 50, sd = 18)
) |>
dplyr::mutate(stat = round(stat, 0))
# dumbbell(
# df,
# 'stat',
# 'setting',
# 'admin1',
# title = '% of HHs that reported open defecation as sanitation facility',
# group_y_title = 'Admin 1',
# group_x_title = 'Setting'
# )
```
### Example 4: donut chart
``` r
# Some summarized data: % of HHs by displacement status
df <- tibble::tibble(
status = c('Displaced', 'Non displaced', 'Returnee', 'Don\'t know/Prefer not to say'),
percentage = c(18, 65, 12, 3)
)
# Donut
# donut(df,
# status,
# percentage,
# hole_size = 3,
# add_text_suffix = '%',
# add_text_color = color('dark_grey'),
# add_text_treshold_display = 5,
# x_title = 'Displacement status',
# title = '% of HHs by displacement status'
# )
```
### Example 5: Waffle chart
``` r
#
# waffle(df, status, percentage, x_title = 'A caption', title = 'A title', subtitle = 'A subtitle')
```
### Example 6: Alluvial chart
``` r
# Some summarized data: % of HHs by self-reported status of displacement in 2021 and in 2022
df <- tibble::tibble(
status_from = c(
rep('Displaced', 4),
rep('Non displaced', 4),
rep('Returnee', 4),
rep('Dnk/Pnts', 4)
),
status_to = c('Displaced', 'Non displaced', 'Returnee', 'Dnk/Pnts', 'Displaced', 'Non displaced', 'Returnee', 'Dnk/Pnts', 'Displaced', 'Non displaced', 'Returnee', 'Dnk/Pnts', 'Displaced', 'Non displaced', 'Returnee', 'Dnk/Pnts'),
percentage = c(20, 8, 18, 1, 12, 21, 0, 2, 0, 3, 12, 1, 0, 0, 1, 1)
)
# Alluvial, here the group is the status for 2021
# alluvial(df,
# status_from,
# status_to,
# percentage,
# status_from,
# from_levels = c("Displaced", "Non displaced", "Returnee", "Dnk/Pnts"),
# alpha = 0.8,
# group_title = "Status for 2021",
# title = "% of HHs by self-reported status from 2021 to 2022"
# )
```
### Example 7: Lollipop chart
``` r
library(tidyr)
# Prepare long data
df <- tibble::tibble(
admin1 = replicate(15, sample(letters, 8)) |> t() |> as.data.frame() |> unite("admin1", sep = "") |> dplyr::pull(admin1),
stat = rnorm(15, mean = 50, sd = 15)
) |>
dplyr::mutate(stat = round(stat, 0))
# Simple vertical lollipop chart
lollipop(
df = df,
x = "admin1",
y = "stat",
flip = FALSE,
dot_size = 3,
y_title = "% of HHs",
x_title = "Admin 1",
title = "% of HHs that received humanitarian assistance"
)
```
<img src="man/figures/README-example-lollipop-chart-1.png" width="65%" />
``` r
# Horizontal lollipop chart with custom colors
hlollipop(
df = df,
x = "admin1",
y = "stat",
dot_size = 4,
line_size = 1,
add_color = color("cat_5_main_2"),
line_color = color("cat_5_main_4"),
y_title = "% of HHs",
x_title = "Admin 1",
title = "% of HHs that received humanitarian assistance"
)
```
<img src="man/figures/README-example-lollipop-chart-2.png" width="65%" />
``` r
# Create data for grouped lollipop - using set.seed for reproducibility
set.seed(123)
df_grouped <- tibble::tibble(
admin1 = rep(c("A", "B", "C", "D", "E", "F"), 2),
group = rep(c("Group A", "Group B"), each = 6),
stat = c(rnorm(6, mean = 40, sd = 10), rnorm(6, mean = 60, sd = 10))
) |>
dplyr::mutate(stat = round(stat, 0))
# Grouped lollipop chart with proper side-by-side positioning
lollipop(
df = df_grouped,
x = "admin1",
y = "stat",
group = "group",
dodge_width = 0.8, # Control spacing between grouped lollipops
dot_size = 3.5,
line_size = 0.8,
y_title = "Value",
x_title = "Category",
title = "True side-by-side grouped lollipop chart"
)
```
<img src="man/figures/README-example-lollipop-chart-3.png" width="65%" />
``` r
# Horizontal grouped lollipop chart
hlollipop(
df = df_grouped,
x = "admin1",
y = "stat",
group = "group",
dodge_width = 0.7, # Narrower spacing for horizontal orientation
dot_size = 3.5,
line_size = 0.8,
y_title = "Category",
x_title = "Value",
title = "Horizontal side-by-side grouped lollipop chart"
)
```
<img src="man/figures/README-example-lollipop-chart-4.png" width="65%" />
## Lollipop Chart Features
Lollipop charts offer several advantages:
- Clean visualization of point data with connecting lines to a baseline
- True side-by-side grouped display for easy comparison between
categories
- Each lollipop maintains its position from dot to baseline
- Customizable appearance with parameters for dot size, line width, and
colors
- The `dodge_width` parameter controls spacing between grouped lollipops
The side-by-side positioning for grouped lollipops makes them visually
distinct from dumbbell plots, which typically connect related points on
the same line.